List of examples of convergent evolution

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Convergent evolution — the repeated evolution of similar traits in multiple lineages which all ancestrally lack the trait — is rife in nature, as illustrated by the examples below. The ultimate cause of convergence is usually a similar evolutionary biome, as similar environments will select for similar traits in any species occupying the same ecological niche, even if those species are only distantly related. In the case of cryptic species, it can create species which are only distinguishable by analysing their genetics. Unrelated organisms often develop analogous structures by adapting to similar environments.

In Animals[edit]

The skulls of the thylacine (left) and the grey wolf, Canis lupus, are similar, although the species are only very distantly related (different infraclasses). The skull shape of the red fox, Vulpes vulpes, is even closer to that of the thylacine.[1]


Prehistoric reptiles[edit]

Extant reptiles[edit]



  • Fish that swim by using an elongated fin along the dorsum, ventrum, or in pairs on their lateral margins (such as Oarfish, Knifefish, Cephalopods) have all come to the same ratio of amplitude to wavelength of fin undulation to maximize speed, 20:1.[84]
  • Mudskippers exhibit a number of adaptations to semi-terrestrial lifestyle which are also usually attributed to Tiktaalik: breathing surface air, having eyes positioned on top of the head, propping up and moving on land using strong fins.[85]



Pill bugs look like pill millipedes, but are actually wood lice that have converged on the same defenses, until they are difficult to tell apart



In plants[edit]

In fungi[edit]

There are a variety of saprophytic and parasitic organisms that have evolved the habit of growing into their substrates as thin strands for extracellular digestion. This is most typical of the "true" fungi, but it has also evolved in Actinobacteria (bacteria), oomycetes (which are part of the stramenopile grouping, as are kelp), parasitic plants, and rhizocephalans (parasitic barnacles).[166][167][168]

In proteins, enzymes and biochemical pathways[edit]

Functional convergence[edit]

Evolutionary convergence of serine and cysteine protease towards the same catalytic triads organisation of acid-base-nucleophile in different protease superfamilies. Shown are the triads of subtilisin, prolyl oligopeptidase, TEV protease, and papain.
Evolutionary convergence of threonine proteases towards the same N-terminal active site organisation. Shown are the catalytic threonine of the proteasome and ornithine acetyltransferase.

Here is a list of examples in which unrelated proteins have similar functions with different structure.

  • The convergent orientation of the catalytic triad in the active site of serine and cysteine proteases independently in over 20 enzyme superfamilies.[169]
  • The use of an N-terminal threonine for proteolysis.
  • The existence of distinct families of carbonic anhydrase is believed to illustrate convergent evolution.
  • The use of (Z)-7-dodecen-1-yl acetate as a sex pheromone by the Asian elephant (Elephas maximus) and by more than 100 species of Lepidoptera.
  • The biosynthesis of plant hormones such as gibberellin and abscisic acid by different biochemical pathways in plants and fungi.[170][171]
  • The protein prestin that drives the cochlea amplifier and confers high auditory sensitivity in mammals, shows numerous convergent amino acid replacements in bats and dolphins, both of which have independently evolved high frequency hearing for echolocation.[22][23] This same signature of convergence has also been found in other genes expressed in the mammalian cochlea[24]
  • The repeated independent evolution of nylonase in two different strains of Flavobacterium and one strain of Pseudomonas.
  • The myoglobin from the abalone Sulculus diversicolor has a different structure from normal myoglobin but serves a similar function — binding oxygen reversibly. “The molecular weight of Sulculus myoglobin is 41kD, 2.5 times larger than other myoglobins.” Moreover, its amino acid sequence has no homology with other invertebrate myoglobins or with hemoglobins, but is 35% homologous with human indoleamine dioxygenase (IDO), a vertebrate tryptophan-degrading enzyme. Interestingly, it does not share similar function with IDO. “The IDO-like myoglobin is unexpectedly widely distributed among gastropodic molluscs, such as Sulculus, Nordotis, Battilus, Omphalius and Chlorostoma.”[172]
  • The hemocyanin from arthropods and molluscs evolved from different ancestors, tyrosinase and insect storage proteins, respectively. They have different molecular weight and structure. However, the proteins both use copper binding sites to transport oxygen.[173]
  • The hexokinase, ribokinase, and galactokinase families of sugar kinases have similar enzymatic functions of sugar phosphorylation, but they evolved from three distinct nonhomologous families since they all have distinct three-dimensional folding and their conserved sequence patterns are strikingly different.[174]
  • Hemoglobins in jawed vertebrates and jawless fish evolved independently. The oxygen-binding hemoglobins of jawless fish evolved from an ancestor of cytoglobin which has no oxygen transport function and is expressed in fibroblast cells.[175]
  • Toxic agent, serine protease BLTX, in the venom produced by two distinct species, the North American short-tailed shrew Blarina brevicauda and the Mexican beaded lizard, undergo convergent evolution. Although their structures are similar, it turns out that they increased the enzyme activity and toxicity through different way of structure changes. These changes are not found in the other non-venomous reptiles or mammals.[176]
  • Another toxin BgK, a K+ channel-blocking toxin from the sea anemone Bunodosoma granulifera and scorpions adopt distinct scaffolds and unrelated structures, however, they have similar functions.[177]
  • Antifreeze proteins are a perfect example of convergent evolution. Different small proteins with a flat surface which is rich in threonine from different organisms are selected to bind to the surface of ice crystals. "These include two proteins from fish, the ocean pout and the winter flounder, and three very active proteins from insects, the yellow mealworm beetle, the spruce budworm moth, and the snow flea."[178]
  • RNA-binding proteins which contain RNA-binding domain(RBD) and the cold-shock domain (CSD) protein family are also an interesting example of convergent evolution. Except that they both have conserved RNP motifs, other protein sequence are totally different. However, they have a similar function.[179]
  • Blue-light-receptive cryptochrome expressed in the sponge eyes likely evolved convergently in the absence of opsins and nervous systems. The fully sequenced genome of Amphimedon queenslandica, a demosponge larvae, lacks one vital visual component: opsin-a gene for a light-sensitive opsin pigment which is essential for vision in other animals.[180]
  • The structure of immunoglobulin G-binding bacterial proteins A and H do not contain any sequences homologous to the constant repeats of IgG antibodies, but they have similar functions. Both protein G, A, H are inhibited in the interactions with IgG antibodies (IgGFc) by a synthetic peptide corresponding to an 11-amino-acid-long sequence in the COOH-terminal region of the repeats.[181]

Structural convergence[edit]

Here is a list of examples in which unrelated proteins have similar tertiary structures but different functions. Whole protein structural convergence is not thought to occur but some convergence of pockets and secondary structural elements have been documented.

  • Some secondary structure convergence occurs due to some residues favouring being in α-helix (helical propensity) and for hydrophobic patches or pocket to be formed at the ends of the parallel sheets.[182]
  • ABAC is a database of convergently evolved protein interaction interfaces. Examples comprise fibronectin/long chain cytokines, NEF/SH2, cyclophilin/capsid proteins.[183]

See also[edit]

  • McGhee, G.R. (2011) Convergent Evolution: Limited Forms Most Beautiful. Vienna Series in Theoretical Biology: Massachusetts Institute of Technology Press, Cambridge (MA). 322 pp.


  1. ^ L Werdelin (1986). "Comparison of Skull Shape in Marsupial and Placental Carnivores". Australian Journal of Zoology 34 (2): 109–117. doi:10.1071/ZO9860109. 
  2. ^ The phylogeny of the ungulates - Donald Prothero
  4. ^ Luo, Zhe-Xi; Cifelli, Richard L.; Kielan-Jaworowska, Zofia (2001). "Dual origin of tribosphenic mammals". Nature 409 (6816): 53–57. doi:10.1038/35051023. PMID 11343108. 
  5. ^ The Curious Evolutionary History of the ‘Marsupial Wolf’ by Kyle Taitt
  6. ^ An Introduction to Zoology, Page 102, by Joseph Springer, Dennis Holley, 2012
  7. ^ Convergent Evolution: Limited Forms Most Beautiful, page 158, by George R. McGhee, 2011
  8. ^ When Nature Discovers The Same Design Over and Over, By NATALIE ANGIER, Published: December 15, 1998
  9. ^ BBC, Koalas' Fingerprints
  10. ^ Convergent EVOLUTION: "Are Dolphins and Bats more related than we think?" by Cariosa Switzer, October 16, 2013
  11. ^ "Analogy: Squirrels and Sugar Gliders". Understanding Evolution. The University of California Museum of Paleontology. Retrieved 28 September 2012. 
  12. ^ /jerboa.html, The Jerboa, by Jay Sharp
  14. ^ The Encyclopedia of Applied Animal Behaviour and Welfare, page 137, D. S. Mills and Jeremy N. Marchant-Forde
  15. ^, Marsupials
  16. ^ 91st Annual Meeting, The American Society of Mammalogists, A Joint Meeting With The Australian Mammal Society Portland State University, 28 June 2011
  17. ^, Tasmanian Devil - Sarcophilus harrisii Taxonomy
  18. ^ Bulletin of the American Museum of Natural History, Volume 27, page 382, By Joel Asaph Allen
  19. ^ Thylacoleo
  20. ^ Yoon, Carol Kaesuk. "Donald R. Griffin, 88, Dies; Argued Animals Can Think", The New York Times, November 14, 2003. Accessed July 16, 2010.
  21. ^ D. R. Griffin (1958). Listening in the dark. Yale Univ. Press, New York.
  22. ^ a b Liu Y, Cotton JA, Shen B, Han X, Rossiter SJ, Zhang S (2010). "Convergent sequence evolution between echolocating bats and dolphins.". Current Biology 20 (2): R53–54. doi:10.1016/j.cub.2009.11.058. 
  23. ^ a b Liu, Y, Rossiter SJ, Han X, Cotton JA, Zhang S (2010). "Cetaceans on a molecular fast track to ultrasonic hearing". Current Biology 20 (20): 1834–1839. doi:10.1016/j.cub.2010.09.008. PMID 20933423. 
  24. ^ a b Davies KTJ, Cotton JA, Kirwan J, Teeling EC, Rossiter SJ (2011). "Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence". Heredity 108 (5): 480–489. doi:10.1038/hdy.2011.119. 
  25. ^ Parker, J; Tsagkogeorga, G; Cotton, JA; Liu, Y; Provero, P; Stupka, E; Rossiter, SJ (2013). "Genome-wide signatures of convergent evolution in echolocating mammals". Nature 502 (7470): , 228–231. Bibcode:2013Natur.502..228P. doi:10.1038/nature12511. 
  26. ^ Rawlins, D. R; Handasyde, K. A. (2002). "The feeding ecology of the striped possum Dactylopsila trivirgata (Marsupialia: Petauridae) in far north Queensland, Australia". J. Zool., Lond. (Zoological Society of London) 257: 195–206. 2010-04-09.
  27. ^ Ji, Q.; Luo, Z.-X.; Yuan, C.-X.; Tabrum, A. R. (2006). "A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals". Science 311 (5764): 1123–1127. doi:10.1126/science.1123026. PMID 16497926. 
  28. ^ Organ, J. M. (2008). The Functional Anatomy of Prehensile and Nonprehensile Tails of the Platyrrhini (Primates) and Procyonidae (Carnivora). Johns Hopkins University. ISBN 9780549312260.
  29. ^ "Entelodont General Evidence". BBC Worldwide. 2002. Retrieved 2007-11-21. 
  30. ^ Dawkins, Richard (2005). The Ancestor's Tale. Boston: Mariner Books. p. 195. ISBN 978-0-618-61916-0.
  31. ^, Whale Shark Facts
  32. ^ "Duck-billed Platypus". Museum of hoaxes. Retrieved 2010-07-21. 
  33. ^ "Platypus facts file". Australian Platypus Conservancy. Retrieved 2006-09-13. 
  34. ^, Eastern Kentucky University, Ornithology, Avian Circulatory System
  35. ^ The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, By Richard Estes
  36. ^ Encyclopedia of Marine Mammals, by William F. Perrin, Bernd Wursig, J. G.M. Thewissen
  37. ^, New Monkey Species Discovered in East Africa, Genus Identification
  38. ^, Copepods and whales share weight belt tactic, 16 June 2011, by Tom Marshall
  39. ^ a b, Evolution Awesomeness Series #3: Convergent Evolution
  40. ^ Fossa
  41. ^ Fossa
  42. ^ Witton, Mark (2013). Pterosaurs: Natural History, Evolution, Anatomy. Princeton University Press. p. 51.
  43. ^ Sereno, P.C. 1986. Phylogeny of the bird-hipped dinosaurs (order Ornithischia). National Geographic Research 2(2):234–256.
  44. ^ Proctor, Nobel S. Manual of Ornithology: Avian Structure and Function. Yale University Press. (1993) ISBN 0-300-05746-6
  45. ^ David Lambert and the Diagram Group. The Field Guide to Prehistoric Life. New York: Facts on File Publications, 1985. pp. 196. ISBN 0-8160-1125-7
  46. ^ Bujor, Mara. "Did sauropods walk with their necks upright?". ZME Science. 
  47. ^ Holtz, Thomas R. Jr. (2011) Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages, Winter 2010 Appendix.
  48. ^ Boyle, Alan (2009-06-29). "How dinosaurs chewed". MSNBC. Retrieved 2009-06-03. 
  49. ^ Southampton, University of. "Fossil Saved from Mule Track Revolutionizes Understanding of Ancient Dolphin-Like Marine Reptile". Science Daily. Retrieved 15 May 2013. 
  50. ^ Marsh, O.C. (1890). "Additional characters of the Ceratopsidae, with notice of new Cretaceous dinosaurs". American Journal of Science 39: 418–429. 
  51. ^ Botha-Brink, J.; Modesto, S.P. (2007). "A mixed-age classed 'pelycosaur' aggregation from South Africa: earliest evidence of parental care in amniotes?". Proceedings of the Royal Society B 274 (1627): 2829–2834. doi:10.1098/rspb.2007.0803. PMC 2288685. PMID 17848370. 
  52. ^ Carroll, R.L. (1969). "Problems of the origin of reptiles". Biological Reviews 44 (3): 393–432. doi:10.1111/j.1469-185x.1969.tb01218.x. 
  53. ^, Ornithischia: Hadrosauroidea
  54. ^ Agnolin, F.L.; Chiarelli, P. (2010). "The position of the claws in Noasauridae (Dinosauria: Abelisauroidea) and its implications for abelisauroid manus evolution". Paläontologische Zeitschrift 84 (2): 293–300. doi:10.1007/s12542-009-0044-2. 
  55. ^ Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming (2009). "An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures". Nature 458 (7236): 333–336. doi:10.1038/nature07856. PMID 19295609. 
  56. ^ The Dinosauria: Second Edition, Page 193, David B. Weishampel, Peter Dodson, Halszka Osmólska, 2004
  57. ^ Dixon, Dougal. "The Complete Book of Dinosaurs." Hermes House, 2006.
  58. ^, The Thorny Devil and Horned Lizards
  59. ^, Phytosauria, The phytosaurs
  60. ^ Fischer, V.; A. Clement; M. Guiomar; P. Godefroit (2011). "The first definite record of a Valanginian ichthyosaur and its implications on the evolution of post-Liassic Ichthyosauria". Cretaceous Research 32 (2): 155–163. doi:10.1016/j.cretres.2010.11.005. 
  61. ^ Hoser, R. (1998). "Death adders (genus Acanthophis): an overview, including descriptions of five new species and one subspecies". Monitor 9 (2): 20–30, 33–41. 
  62. ^ Ophisaurus at Life is Short, but Snakes are Long
  63. ^ Sheffield, K. Megan; Butcher, Michael T.; Shugart, S. Katharine; Gander, Jennifer C.; Blob, Richard W. (2011). "Locomotor loading mechanics in the hindlimbs of tegu lizards (Tupinambis merianae): Comparative and evolutionary implications". The Journal of Experimental Biology 214 (15): 2616–2630. doi:10.1242/jeb.048801. 
  64. ^ Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM (2012). "Repeated origin and loss of adhesive toepads in geckos". PLOS ONE 7 (6): e39429. doi:10.1371/journal.pone.0039429. PMC 3384654. PMID 22761794. 
  65. ^ Losos, Jonathan B. (2007). "Detective Work in the West Indies: Integrating Historical and Experimental Approaches to Study Island Lizard Evolution". BioScience 57 (7): 585–97. doi:10.1641/B570712. 
  66. ^ "Tuatara". New Zealand Ecology: Living Fossils. TerraNature Trust. 2004. Retrieved 10 November 2006. 
  67. ^ fox News, Deadliest sea snake splits in two, By Douglas Main, December 11, 2012
  68. ^ Christidis, Les; Boles, Walter (2008). Systematics and taxonomy of Australian Birds. Collingwood, Vic: CSIRO Publishing. pp. 81–82. ISBN 978-0-643-06511-6.
  69. ^ Christidis L, Boles WE (2008). Systematics and Taxonomy of Australian Birds. Canberra: CSIRO Publishing. p. 196. ISBN 978-0-643-06511-6.
  70. ^ The Origin and Evolution of Birds, Page 185, by Alan Feduccia, 1999
  71. ^ Vulture, By Thom van Dooren, page 20, 2011
  72. ^ Prinzinger, R.; Schafer T. & Schuchmann K. L. (1992). "Energy metabolism, respiratory quotient and breathing parameters in two convergent small bird species : the fork-tailed sunbird Aethopyga christinae (Nectariniidae) and the Chilean hummingbird Sephanoides sephanoides (Trochilidae)". Journal of thermal biology 17.
  73. ^ Herrera, Carlos M. (1992). "Activity pattern and thermal biology of a day-flying hawkmoth (Macroglossum stellatarum) under Mediterranean summer conditions". Ecological Entomology 17
  74. ^ Harshman J, Braun EL, Braun MJ, et al. (September 2008). "Phylogenomic evidence for multiple losses of flight in ratite birds". Proceedings of the National Academy of Sciences of the United States of America 105 (36): 13462–7. doi:10.1073/pnas.0803242105. PMC 2533212. PMID 18765814. 
  75. ^ Holmes, Bob (2008-06-26). "Bird evolutionary tree given a shake by DNA study". New Scientist.
  76. ^, Mystery bird: yellow-throated longclaw, Macronyx croceus, Dec. 2011
  77. ^ Cory, Charles B. (March 1918). "Catalogue of Birds of the Americas". Fieldiana Zoology. 197 (Chicago, IL, USA: Field Museum of Natural History) 13 (Part 2): 13. Retrieved 28 September 2012. 
  78. ^, Hairywoodpeckers, by Species account by Jeannine Miesle
  79. ^ Australian Birds by Donald Trounson, Molly Trounson, National Book Distributors and Publishers, 1996
  80. ^ University of North Carolina, Animal Bioacoustics: Communication and echolocation among aquatic and terrestrial animals
  81. ^ Evolution of brain structures for vocal learning in birds, by Erich D. JARVIS
  82. ^ Birn-Jeffery AV, Miller CE, Naish D, Rayfield EJ, Hone DW (2012). "Pedal claw curvature in birds, lizards and mesozoic dinosaurs--complicated categories and compensating for mass-specific and phylogenetic control". PLOS ONE 7 (12): e50555. doi:10.1371/journal.pone.0050555. PMC 3515613. PMID 23227184. 
  83. ^ Walter, Timothy J.; Marar, Uma (2007). "Sleeping With One Eye Open" (PDF). Capitol Sleep Medicine Newsletter. pp. 3621–3628. 
  84. ^ Bale R and Neveln ID, Bhalla AP, MacIver MA, Patankar NA" (April 2015). "Convergent evolution of mechanically optimal locomotion in aquatic invertebrates and vertebrates". PLOS Biology 13 (4): e1002123. doi:10.1371/journal.pbio.1002123. PMID 25919026. 
  85. ^ Daeschler EB, Shubin NH, Jenkins FA (April 2006). "A Devonian tetrapod-like fish and the evolution of the tetrapod body plan". Nature 440 (7085): 757–63. doi:10.1038/nature04639. PMID 16598249. 
  86. ^, Independent eye movement in fish, chameleons and frogmouths
  87. ^, Cichlids and Sunfish: A Comparison, By Sandtiger
  88. ^ Kullander, Sven; Efrem Ferreira (2006). "A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae)" (PDF). Ichthyological Explorations of Freshwaters 17 (4). 
  89. ^ Willis SC, Macrander J, Farias IP, Ortí G (2012). "Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus cichla) using multi-locus data". BMC Evolutionary Biology 12 (1): 96. doi:10.1186/1471-2148-12-96. PMC 3563476. PMID 22727018. 
  90. ^ Crevel RW, Fedyk JK, Spurgeon MJ (July 2002). "Antifreeze proteins: characteristics, occurrence and human exposure". Food and Chemical Toxicology 40 (7): 899–903. doi:10.1016/S0278-6915(02)00042-X. PMID 12065210. 
  91. ^ Chen L, DeVries AL, Cheng CH (April 1997). "Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish". Proceedings of the National Academy of Sciences of the United States of America 94 (8): 3811–6. doi:10.1073/pnas.94.8.3811. PMC 20523. PMID 9108060. 
  92. ^ Hopkins CD (December 1995). "Convergent designs for electrogenesis and electroreception". Current Opinion in Neurobiology 5 (6): 769–77. doi:10.1016/0959-4388(95)80105-7. PMID 8805421. 
  93. ^ Hopkins, C. D. (1995). "Convergent designs for electrogenesis and electroreception". Current Opinion in Neurobiology 5 (6): 769–777. doi:10.1016/0959-4388(95)80105-7. PMID 8805421. 
  94. ^ Froese, Rainer, and Daniel Pauly, eds. (2012). "Gasterosteidae" in FishBase. October 2012 version.
  95. ^ Fish, F. E. (1990). "Wing design and scaling of flying fish with regard to flight performance" (PDF). Journal of Zoology 221 (3): 391–403. doi:10.1111/j.1469-7998.1990.tb04009.x. 
  96. ^ The Rise of Fishes: 500 Million Years of Evolution by John A. Long
  97. ^ Cheney KL, Grutter AS, Blomberg SP, Marshall NJ (August 2009). "Blue and yellow signal cleaning behavior in coral reef fishes". Current Biology 19 (15): 1283–7. doi:10.1016/j.cub.2009.06.028. PMID 19592250. 
  98. ^ Why are the eyes of larval Black Dragonfish on stalks? - Australian Museum
  99. ^, What's the Difference Between a Sawfish and a Sawshark? Sunday, 26 June 2011
  100. ^, Tongues of chameleons and amphibians
  101. ^, Study discovers why poison dart frogs are toxic, by Rhett Butler, August 9, 2005
  102. ^ Nussbaum, Ronald A. (1998). Cogger, H.G. & Zweifel, R.G., ed. Encyclopedia of Reptiles and Amphibians. San Diego: Academic Press. pp. 52–59.
  103. ^ Niedźwiedzki (2010). "Tetrapod trackways from the early Middle Devonian period of Poland". Nature 463 (7277): 43–48. doi:10.1038/nature08623. PMID 20054388. 
  104. ^ Parra-Olea G, Wake DB (July 2001). "Extreme morphological and ecological homoplasy in tropical salamanders". Proceedings of the National Academy of Sciences of the United States of America 98 (14): 7888–91. doi:10.1073/pnas.131203598. PMC 35438. PMID 11427707. 
  105. ^ Milner, Andrew R. (1980). "The Tetrapod Assemblage from Nýrany, Czechoslovakia". In Panchen, A. L. The Terrestrial Environment and the Origin of Land Vertebrates. London and New York: Academic Press. pp. 439–96. 
  106. ^ Platnick, Norman I. (2008): The world spider catalog, version 8.5. American Museum of Natural History.
  107. ^, Absurd Creature of the Week: Enormous Hermit Crab Tears Through Coconuts, Eats Kittens, By Matt Simon, 12.20.13
  108. ^ "Defining Features of Nominal Clades of Diplopoda" (PDF). Field Museum of Natural History. Retrieved June 24, 2007. 
  109. ^ Briones-Fourzán, Patricia; Lozano-Alvarez, Enrique (1991). "Aspects of the biology of the giant isopod Bathynomus giganteus A. Milne Edwards, 1879 (Flabellifera: Cirolanidae), off the Yucatan Peninsula". Journal of Crustacean Biology 11 (3): 375–385. doi:10.2307/1548464. JSTOR 1548464. 
  110. ^ "Monster of the deep: Shocked oil workers catch TWO-AND-A-HALF-FOOT 'woodlouse'". The Daily Mail (London). April 3, 2010. 
  111. ^ Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010). "Insect silk: one name, many materials". Annual Review of Entomology 55 (1): 171–88. doi:10.1146/annurev-ento-112408-085401. PMID 19728833. 
  112. ^ The Praying Mantids, Page 341, by Frederick R. Prete
  113. ^ Insects, pt. 1-4. History of the zoophytes. By Oliver Goldsmith, page 39
  114. ^ Fungal Biology, By J. W. Deacon, page 278
  115. ^ King, JR; Trager, JC.; Pérez-Lachaud, G. (2007), "Natural history of the slave making ant, Polyergus lucidus, sensu lato in northern Florida and its three Formica pallidefulva group hosts.", Journal of Insect Science 7 (42): 1–14, doi:10.1673/031.007.4201 
  116. ^ Goropashnaya, A. V.; Fedorov, V. B.; Seifert, B.; Pamilo, P. (2012), Chaline, Nicolas, ed., "Phylogenetic Relationships of Palaearctic Formica Species (Hymenoptera, Formicidae) Based on Mitochondrial Cytochrome b Sequences", PLoS ONE 7 (7): 1–7, doi:10.1371/journal.pone.0041697, PMC 3402446, PMID 22911845 
  117. ^ D'Ettorre, Patrizia; Heinze, Jürgen (2001), "Sociobiology of slave-making ants", Acta Ethologica 3: 67–82, doi:10.1007/s102110100038 
  118. ^ Suzuki, Y.; Palopoli, M. (2001). "Evolution of insect abdominal appendages: Are prolegs homologous or convergent traits?". Development Genes and Evolution 211 (10): 486–492. doi:10.1007/s00427-001-0182-3. PMID 11702198. 
  119. ^, MOLLUSCS
  120. ^ University of Hawaii Educational page from Christopher F. Bird, Dep't of Botany. Photos and detailed information distinguishing the different varieties.
  121. ^ Lottia gigantea: taxonomy, facts, life cycle, bibliography
  122. ^ Yoshida, Masa-aki; Yura, Kei; Ogura, Atsushi (5 March 2014). "Cephalopod eye evolution was modulated by the acquisition of Pax-6 splicing variants". Scientific Reports ( 4. doi:10.1038/srep04256. Retrieved June 30, 2014. 
  123. ^ Halder, G.; Callaerts, P.; Gehring, W. J. (1995). "New perspectives on eye evolution". Current opinion in genetics & development 5 (5): 602–609. doi:10.1016/0959-437X(95)80029-8. PMID 8664548. 
  124. ^ "The illustration of the swim bladder in fishes is a good one, because it shows us clearly the highly important fact that an organ originally constructed for one purpose, namely, flotation, may be converted into one for a widely different purpose, namely, respiration. The swim bladder has, also, been worked in as an accessory to the auditory organs of certain fishes. All physiologists admit that the swimbladder is homologous, or "ideally similar" in position and structure with the lungs of the higher vertebrate animals: hence there is no reason to doubt that the swim bladder has actually been converted into lungs, or an organ used exclusively for respiration. According to this view it may be inferred that all vertebrate animals with true lungs are descended by ordinary generation from an ancient and unknown prototype, which was furnished with a floating apparatus or swim bladder." Darwin, Origin of Species.
  125. ^, Brachiopods and Bivalves: paired shells, with different histories
  126. ^ Mill, P. J.; Pickard, R. S. (1975). "Jet-propulsion in anisopteran dragonfly larvae". Journal of Comparative Physiology 97 (4): 329–338. doi:10.1007/BF00631969. 
  127. ^ Bone, Q.; Trueman, E. R. (2009). "Jet propulsion of the calycophoran siphonophores Chelophyes and Abylopsis". Journal of the Marine Biological Association of the United Kingdom 62: 263. doi:10.1017/S0025315400057271. 
  128. ^ a b Bone, Q.; Trueman, E. R. (2009). "Jet propulsion in salps (Tunicata: Thaliacea)". Journal of Zoology 201: 481–506. doi:10.1111/j.1469-7998.1983.tb05071.x. 
  129. ^ Bone, Q.; Trueman, E. (1984). "Jet propulsion in Doliolum (Tunicata: Thaliacea)". Journal of Experimental Marine Biology and Ecology 76: 105–118. doi:10.1016/0022-0981(84)90059-5. 
  130. ^ Demont, M. Edwin; Gosline, John M. (January 1, 1988). "Mechanics of Jet Propulsion in the Hydromedusan Jellyfish (section I. Mechanical Properties of the Locomotor Structure)". J. Exp. Biol. (134): 313–332. 
  131. ^ Demont, M. Edwin; Gosline, John M. (January 1, 1988). "Mechanics of Jet Propulsion in the Hydromedusan Jellyfish (section II. Energetics of the Jet Cycle)". J. Exp. Biol. (134): 333–345. 
  132. ^ Demont, M. Edwin; Gosline, John M. (January 1, 1988). "Mechanics of Jet Propulsion in the Hydromedusan Jellyfish (section III. A Natural Resonating Bell; The Presence and Importance of a Resonant Phenomenon in the Locomotor Structure)". J. Exp. Biol. (134): 347–361. 
  133. ^ Madin, L. P. (1990). "Aspects of jet propulsion in salps". Canadian Journal of Zoology 68: 765–777. doi:10.1139/z90-111. 
  134. ^, notochor
  135. ^ Benton, Michael J.; Harper, David A.T. (2009), Introduction to paleobiology and the fossil record, John Wiley & Sons, p. 77, ISBN 978-1-4051-8646-9 
  136. ^ Smith WL, Wheeler WC (2006). "Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms".
  137. ^ Meighen EA (1999). "Autoinduction of light emission in different species of bioluminescent bacteria". Luminescence 14 (1): 3–9. doi:10.1002/(SICI)1522-7243(199901/02)14:1<3::AID-BIO507>3.0.CO;2-4. PMID 10398554. 
  138. ^ Bioluminescent
  139. ^ Liddell, Scott, Jones. γένεσις A.II, A Greek-English Lexicon, Oxford: Clarendon Press, 1940. q.v..
  140. ^ Robinson JL, Pyzyna B, Atrasz RG, et al. (February 2005). "Growth kinetics of extremely halophilic archaea (family halobacteriaceae) as revealed by arrhenius plots". Journal of Bacteriology 187 (3): 923–9. doi:10.1128/JB.187.3.923-929.2005. PMC 545725. PMID 15659670. 
  142. ^ Strickberger's Evolution, By Brian Keith Hall, Page 188, Benedikt Hallgrímsson, Monroe W. Strickberger
  143. ^, Separate Evolutionary Origins of Teeth from Evidence in Fossil Jawed Vertebrates, by Moya Meredith Smith1 and Zerina Johanson, 21 February 2003
  144. ^ Biology at the University of New Mexico, Vertebrate Adaptations
  145. ^, Ruby-throated HummingbirdArchilochus colubris
  146. ^, Neuroglobins, Pivotal Proteins Associated with Emerging Neural Systems and Precursors of Metazoan Globin Diversity by Lechauve, Christophe; Jager, Muriel; Laguerre, Laurent; Kiger, Laurent; Correc, Gaelle; Leroux, Cedric; Vinogradov, Serge; Czjzek, Mirjam; Marden, Michael C.; Bail
  147. ^ Dunn, Casey (2005): Siphonophores. Retrieved 2008-JUL-08.
  148. ^ MARINE ECOLOGY PROGRESS SERIES, Dec. 7, 2006 By Sean P. Colin, John H. Costello, Heather Kordula
  149. ^, Study sheds light on tunicate evolution, July 5, 2011, Source: Woods Hole Oceanographic Institution
  150. ^, How the First Plant Came to Be. A genetic analysis reveals the ancient, complex--and symbiotic--roots of photosynthesis in plants, Feb 16, 2012, By David Biello
  151. ^ Simpson, M. G. 2010. "Plant Morphology". In: Plant Systematics, 2nd. edition. Elsevier Academic Press. Chapter 9.
  152. ^, Which Plants Contain Caffeine?, by Gayle Nicholas Scott, March 13, 2013
  153. ^ "Epiphytes - adaptations to an aerial habitat". Royal Botanic Gardens, Kew. 
  154. ^ Clarke, C.M. 1997. Nepenthes of Borneo. Natural History Publications (Borneo), Kota Kinabalu.
  155. ^ Albert, V.A., Williams, S.E., and Chase, M.W. (1992). "Carnivorous plants: Phylogeny and structural evolution". Science 257 (5076): 1491–1495. doi:10.1126/science.1523408. PMID 1523408. 
  156. ^ Ellison, A.M., and Gotelli, N.J. (2009). "Energetics and the evolution of carnivorous plants—Darwin's 'most wonderful plants in the world'.". Journal of Experimental Botany 60 (1): 19–42. doi:10.1093/jxb/ern179. PMID 19213724. 
  157. ^ Albert, V.A.; Williams, S.E.; Chase, M.W. (1992). "Carnivorous Plants: Phylogeny and Structural Evolution". Science 257 (5076): 1491–1495. doi:10.1126/science.1523408. PMID 1523408. 
  158. ^ Owen Jr, T.P.; Lennon, K.A. (1999). "Structure and Development of Pitchers from the Carnivorous Plant Nepenthes alta (Nepenthaceae)". American Journal of Botany 86 (10): 1382–1390. doi:10.2307/2656921. PMID 10523280. 
  159. ^, Desert plants with succulent leaves
  160. ^, orchid functional genomics
  161. ^, Desert plants with succulent stems
  162. ^ Indiana University, The Origin of Dendrosenecio
  163. ^ Keeley, Jon E. & Rundel, Philip W. (2003), "Evolution of CAM and C4 Carbon‐Concentrating Mechanisms" (PDF), International Journal of Plant Sciences 164 (S3): S55, doi:10.1086/374192, retrieved 2012-02-19 
  164. ^ Sage, R. F.; Christin, P. -A.; Edwards, E. J. (2011). "The C4 plant lineages of planet Earth". Journal of Experimental Botany 62 (9): 3155–3169. doi:10.1093/jxb/err048. PMID 21414957. 
  165. ^ Williams BP, Johnston IG, Covshoff S, Hibberd JM (September 2013). "Phenotypic landscape inference reveals multiple evolutionary paths to C₄ photosynthesis". eLife 2: e00961. doi:10.7554/eLife.00961. PMID 24082995. 
  166. ^ Advanced Biology Principles, p296, fig 14.16—Diagram detailing the re-absorption of substrates within the hypha.
  167. ^ Advanced biology principles, p 296—states the purpose of saprotrophs and their internal nutrition, as well as the main two types of fungi that are most often referred to, as well as describes, visually, the process of saprotrophic nutrition through a diagram of hyphae, referring to the Rhizobium on damp, stale whole-meal bread or rotting fruit.
  168. ^ Clegg, C. J.; Mackean, D. G. (2006). Advanced Biology: Principles and Applications, 2nd ed. Hodder Publishing
  169. ^ Buller, AR; Townsend, CA (Feb 19, 2013). "Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad.". Proceedings of the National Academy of Sciences of the United States of America 110 (8): E653–61. doi:10.1073/pnas.1221050110. PMID 23382230. 
  170. ^ Tudzynski B. (2005). "Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology". Appl Microbiol Biotechnol. 66 (6): 597–611. doi:10.1007/s00253-004-1805-1. PMID 15578178. 
  171. ^ Siewers V, Smedsgaard J, Tudzynski P (July 2004). "The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea". Applied and Environmental Microbiology 70 (7): 3868–76. doi:10.1128/AEM.70.7.3868-3876.2004. PMC 444755. PMID 15240257. 
  172. ^ Suzuki T, Yuasa H, Imai K (July 1996). "Convergent evolution. The gene structure of Sulculus 41 kDa myoglobin is homologous with that of human indoleamine dioxygenase". Biochimica Et Biophysica Acta 1308 (1): 41–8. doi:10.1016/0167-4781(96)00059-0. PMID 8765749. 
  173. ^ Anupam N&am, Jimmy Ng and Trustin Ennacheril, "The Molecular Evolution of Arthropod & Molluscan Hemocyanin, Evidence for Apomorphic origin and convergent evolution in O2 hinding sites", December 1, 1997
  174. ^ Bork P, Sander C, Valencia A (January 1993). "Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases". Protein Science 2 (1): 31–40. doi:10.1002/pro.5560020104. PMC 2142297. PMID 8382990. 
  175. ^ Hoffmann FG, Opazo JC, Storz JF (August 2010). "Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates". Proceedings of the National Academy of Sciences of the United States of America 107 (32): 14274–9. doi:10.1073/pnas.1006756107. PMC 2922537. PMID 20660759. 
  176. ^ Aminetzach YT, Srouji JR, Kong CY, Hoekstra HE (December 2009). "Convergent evolution of novel protein function in shrew and lizard venom". Current Biology : CB 19 (22): 1925–31. doi:10.1016/j.cub.2009.09.022. PMID 19879144. 
  177. ^ Dauplais M, Lecoq A, Song J, et al. (February 1997). "On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures". The Journal of Biological Chemistry 272 (7): 4302–9. doi:10.1074/jbc.272.7.4302. PMID 9020148. 
  178. ^ Venketesh S, Dayananda C (2008). "Properties, potentials, and prospects of antifreeze proteins". Critical Reviews in Biotechnology 28 (1): 57–82. doi:10.1080/07388550801891152. PMID 18322856. 
  179. ^ Graumann P, Marahiel MA (April 1996). "A case of convergent evolution of nucleic acid binding modules". BioEssays 18 (4): 309–15. doi:10.1002/bies.950180409. PMID 8967899. 
  180. ^ Ajna S. Rivera, Todd H. Oakley, etc. Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and Opsin, The Journal of Experimental Biology 215, 1278-1286
  181. ^ Frick IM, Wikström M, Forsén S, et al. (September 1992). "Convergent evolution among immunoglobulin G-binding bacterial proteins". Proceedings of the National Academy of Sciences of the United States of America 89 (18): 8532–6. doi:10.1073/pnas.89.18.8532. PMC 49954. PMID 1528858. 
  182. ^ Rao ST, Rossmann MG (May 1973). "Comparison of super-secondary structures in proteins". Journal of Molecular Biology 76 (2): 241–56. doi:10.1016/0022-2836(73)90388-4. PMID 4737475. 
  183. ^ Henschel A, Kim WK, Schroeder M (March 2006). "Equivalent binding sites reveal convergently evolved interaction motifs". Bioinformatics 22 (5): 550–5. doi:10.1093/bioinformatics/bti782. PMID 16287935.