List of gravitational wave observations

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
The first measurement of a gravitational wave event

This is a list of observed gravitational wave events. Direct observation of gravitational waves,[n 1] which commenced with the detection of an event by LIGO in 2015, constitutes part of gravitational wave astronomy. LIGO has played a role in all subsequent detections to date, with Virgo joining in August 2017. A third observing run, O3/2019, began on April 1, 2019.

Nomenclature[edit]

Gravitational wave events are named starting with the prefix GW, while observations that trigger a event alert but have not (yet) been confirmed are named starting with the prefix S.[2] The next two numbers indicate the year the event was observed, the middle two numbers are the month of observation and the final two numbers are the day of the month on which the event was observed. This is similar to the systematic naming for other kinds of astronomical event observations, such as those of gamma-ray bursts. Probable detections that are not confidently identified as gravitational wave events are designated LVT ("LIGO-Virgo trigger"). Known gravitational wave events come from the merger of two black holes (BH), two neutron stars (NS), or a black hole and a neutron star.[3][4]

Observations are made in "runs", three of them so far, with maintenance and upgrades of the detectors made between runs. The first run, O1, ran from 12 September 2015 to 19 January 2016, with O2 from 30 November 2016 to 25 August 2017. [5] O3 began on 1 April 2019; it is divided (so far) into O3a, from 1 April to 30 September 2019, and O3b, from 1 November 2019 to the present.[6]

List of gravitational wave events[edit]

Events from LIGO & Virgo
O1 & O2/2015-2017 events
O3/2019 Alerts

Observations from O1 and O2/2015-2017[edit]

List of binary merger events[7][8]
GW event
and time (UTC)[n 2]
Date
published
Location
area[n 3]
(deg2)
Luminosity
distance

(Mpc)[n 4]
Energy
radiated
(c2M)
[n 5]
Chirp mass (M)
[n 6]
Effective spin[n 7] Primary Secondary Remnant Notes Ref.
Type Mass (M) Type Mass (M) Type Mass (M) Spin[n 8]
GW150914
09:50:45
2016-02-11
179; mostly to the south
430+150
−170
3.1+0.4
−0.4
28.6+1.6
−1.5
−0.01+0.12
−0.13
BH
[n 9]
35.6+4.8
−3.0
BH
[n 10]
30.6+3.0
−4.4
BH
63.1+3.3
−3.0
0.69+0.05
−0.04
First GW detection;
first BH merger observed
[14][15][13]
GW151012 [fr]
09∶54:43
2016-06-15
1555
1060+540
−480
1.5+0.5
−0.5
15.2+2.0
−1.1
0.04+0.28
−0.19
BH
23.3+14.0
−5.5
BH
13.6+4.1
−4.8
BH
35.7+9.9
−3.8
0.67+0.13
−0.11
Formerly candidate LVT151012;
accepted as astrophysical since February 2019
[16][8][7]
GW151226
03:38:53
2016-06-15
1033
440+180
−190
1.0+0.1
−0.2
8.9+0.3
−0.3
0.18+0.20
−0.12
BH
13.7+8.8
−3.2
BH
7.7+2.2
−2.6
BH
20.5+6.4
−1.5
0.74+0.07
−0.05
[17][18]
GW170104
10∶11:58
2017-06-01
924
960+430
−410
2.2+0.5
−0.5
21.5+2.1
−1.7
−0.04+0.17
−0.20
BH
31.0+7.2
−5.6
BH
20.1+4.9
−4.5
BH
49.1+5.2
−3.5
0.66+0.08
−0.10
[9][19]
GW170608
02:01:16
2017-11-16
396; to the north
320+120
−110
0.9+0.0
−0.1
7.9+0.2
−0.2
0.03+0.19
−0.07
BH
10.9+5.3
−1.7
BH
7.6+1.3
−2.1
BH
17.8+3.2
−0.7
0.69+0.04
−0.04
Smallest BH progenitor
masses to date
[20]
GW170729
18:56:29
2018-11-30
1033
2750+1350
−1320
4.8+1.7
−1.7
35.7+6.5
−4.7
0.36+0.21
−0.25
BH
50.6+16.6
−10.2
BH
34.3+9.1
−10.1
BH
80.3+14.6
−10.2
0.81+0.07
−0.13
Largest progenitor masses to date [8]
GW170809
08:28:21
2018-11-30
340; towards Cetus
990+320
−380
2.7+0.6
−0.6
25.0+2.1
−1.6
0.07+0.16
−0.16
BH
35.2+8.3
−6.0
BH
23.8+5.2
−5.1
BH
56.4+5.2
−3.7
0.70+0.08
−0.09
[8]
GW170814
10∶30:43
2017-09-27
87; towards Eridanus
580+160
−210
2.7+0.4
−0.3
24.2+1.4
−1.1
0.07+0.12
−0.11
BH
30.7+5.7
−3.0
BH
25.3+2.9
−4.1
BH
53.4+3.2
−2.4
0.72+0.07
−0.05
First announced detection by
three observatories; first polarization measurement
[21][22]
GW170817
12∶41:04
2017-10-16
16; NGC 4993
40±10
≥ 0.04
1.186+0.001
−0.001
0.00+0.02
−0.01
NS
1.46+0.12
−0.10
NS
1.27+0.09
−0.09
NS
[n 11]
≤ 2.8[n 12]
≤ 0.89
First NS merger observed in
GW; first detection of EM counterpart (GRB 170817A; AT 2017gfo); nearest event to date
[12][25][26]
GW170818
02:25:09
2018-11-30
39; towards Pegasus
1020+430
−360
2.7+0.5
−0.5
26.7+2.1
−1.7
−0.09+0.18
−0.21
BH
35.5+7.5
−4.7
BH
26.8+4.3
−5.2
BH
59.8+4.8
−3.8
0.67+0.07
−0.08
[8]
GW170823
13:13:58
2018-11-30
1651
1850±840
3.3+0.9
−0.8
29.3+4.2
−3.2
0.08+0.20
−0.22
BH
39.6+10.0
−6.6
BH
29.4+6.3
−7.1
BH
65.6+9.4
−6.6
0.71+0.08
−0.10
[8]
Gravitational Wave Transient Catalog 1. Credit:LIGO Scientific Collaboration and Virgo Collaboration/Georgia Tech/S. Ghonge & K. Jani

Observation candidates from O3/2019[edit]

From observation run O3/2019 on, observations are published as Open Public Alerts to facilitate multi-messenger observations of events.[27][28][29] Candidate event records can be directly accessed at the Gravitational Wave Candidate Event Database.[30] On 1 April 2019, the start of the third observation run was announced with a circular published in the public alerts tracker.[31] The first O3/2019 binary black hole detection alert was broadcast on 8 April 2019. A significant percentage of O3 candidate events detected by LIGO are accompanied by corresponding triggers at Virgo. False alarm rates are mixed, with more than half of events assigned false alarm rates greater than 1 per 20 years, contingent on presence of glitches around signal, foreground electromagnetic instability, seismic activity, and operational status of any one of the three LIGO-Virgo instruments. For instance, events S190421ar and S190425z weren’t detected by Virgo and LIGO’s Hanford site, respectively.

The LIGO/Virgo collaboration took a short break from observing during the month of October 2019 to improve performance and prepare for future plans, with no signals detected in that month as a result.[32]

The detection rates and signal qualities of gravitational waves will improve when the Kamioka Gravitational Wave Detector (KAGRA) in Japan becomes operational, projected to happen in late 2019.[33]

List of O3 event alerts[7][8]
GW event  Detection
time (UTC)
Location
area
[n 13]
(deg2)
Luminosity
distance

(Mpc)
[n 14]
Detector
[n 15]
False Alarm
Rate (Hz)
Classification Notes Ref
NS / NS
[n 16]
NS / BH
[n 17]
BH / BH
[n 18]
Mass gap
[n 19]
Terrestrial
[n 20]
S190408an 2019-04-08
18:18:02
387; towards Pegasus or Lacerta
1473±358
H,L,V 2.8 10−18 0.0 0.0 ~1.0 0.0 9.8 10−12 [34][35]
S190412m 2019-04-12
05:30:44
156; towards Virgo or Boötes
812±194
H,L,V 1.7 10−27 0.0 0.0 ~1.0 0.0 1.7 10−20 [36]
S190421ar 2019-04-21
21:38:56
1444
1628±535
H,L 1.5 10−8 0.0 0.0 0.967 0.0 0.033 Initially marked with 96% chance of having a terrestrial origin ["noise"], but later upgraded to 97% chance of being a binary black hole merger. [37]
S190425z 2019-04-25
08:18:05
7461
156±41
L,V 4.5 10−13 0.9994 0.0 0.0 0.0 0.00060 [38][39]
S190426c 2019-04-26
15:21:55
1131
377±100
H,L,V 1.9 10−8 0.244 0.064 0.0 0.117 0.575 Initially marked with 49% chance of being binary neutron star merger, 13% neutron star-black hole merger, 24% mass gap merger.
Later marked with a 52% chance of NS-BH, 22% mass gap, 13% BNS, and 14% terrestrial, before being revised to the current solution
[40][41]

[42]

S190503bf 2019-05-03
18:54:04
448; towards Columba, Pictor, or Puppis
421±105
H,L,V 1.6 10−9 0.0 0.0047 0.963 0.032 0.00012 [43]
S190510g 2019-05-10
02:59:39
1166; towards Columba or Canis Major
227±92
H,L,V 8.8 10−9 0.42 0.0 0.0 0.0 0.58 Initially reported with a 2% chance of terrestrial origin ["noise"], later downgraded to ~58% terrestrial foreground probability ["noise"]. [44]
S190512at 2019-05-12
18:07:14
399; towards Scorpius or Ophiuchus
1331±341
H,L,V 1.9 10−9 0.0 0.0 0.990 0.0 0.010 [45]
S190513bm 2019-05-13
20:54:28
691; towards Sagittarius, Capricornus, Perseus, or Camelopardalis
1987±501
H,L,V 3.7 10−13 0.0 0.0052 0.943 0.052 6.0 10−8 [46]
S190517h 2019-05-17
05:51:01
939
2950±1038
H,L,V 2.4 10−9 0.0 0.00077 0.983 0.017 0.000043 [47]
S190519bj 2019-05-19
15:35:44
967
3154±791
H,L,V 5.8 10−9 0.0 0.0 0.956 0.0 0.044 [48]
S190521g 2019-05-21
03:02:29
765; towards Coma, Canes Venatici, or Phoenix
3931±953
H,L,V 3.8 10−9 0.0 0.0 0.966 0.0 0.034 [49]
S190521r 2019-05-21
07:43:59
488
1136±279
H,L 3.2 10−10 0.0 0.0 0.9993 0.0 0.00067 [50]
S190602aq 2019-06-02
17:59:27
1172
797±238
H,L,V 1.9 10−9 0.0 0.0 0.990 0.0 0.0097 [51]
S190630ag 2019-06-30
18:52:05
8493
1059±307
L,V 1.3 10−13 0.0 0.0052 0.943 0.052 1.8 10−7 [52]
S190701ah 2019-07-01 20:33:45
67; towards Eridanus or Cetus
1045±254
H,L,V 1.9 10−8 0.0 0.0 0.934 0.0 0.066 [53]
S190706ai 2019-07-06 22:26:57
1100
5725±1446
H,L,V 1.9 10−9 0.0 0.0 0.990 0.0 0.010 [54]
S190707q 2019-07-07 09:33:44
1375
810±234
H,L 5.3 10−12 0.0 0.0 0.999989 0.0 0.000011 [55]
S190720a 2019-07-20 00:08:53
1461
1071±323
H,L 3.8 10-9 0.0 0.0 0.989 0.0 0.011 Initially reported with a 71% chance of being terrestrial "noise" [non-cosmological in origin], upgraded to 1% after preliminary Virgo detector signal path inconsistency found to be insignificant. [56]
S190727h 2019-07-27 06:03:51
151; towards Cassiopeia,Andromeda or Carina
2839±655
H,L,V 1.4 10-10 0.0 0.0018 0.922 0.028 0.048 [57]
S190728q 2019-07-28 06:45:27
104; towards Delphinus, Pegasus, or Equuleus
874±171
H,L,V 2.5 10-23 0.0 0.144 0.340 0.516 3.6 10-13 Updated from an initial estimate which gave 14.4% NS/BH, 34.0% BH/BH, 51.6% mass gap, and a later estimate which gave a virtually certain BH/BH merger. [58]
S190814bv 2019-08-14 21:11:18
23; towards Cetus or Sculptor
267±52
H,L,V 2.0 10-33 0.0 0.998 0 0.0021 0 Updated from earlier estimate which predicted nearly 100% mass gap. [59][60][61]
S190828j 2019-08-28 06:34:05
587
1803±423
H,L,V 8.5 10-22 0.0 0.0 ~1.0 0.0 3.8 10-14 [62]
S190828l 2019-08-28 06:55:09
948
1609±426
H,L,V 4.6 10-11 0.0 0.0 0.9996 0.0 0.00041 [63]
S190901ap 2019-09-01
23:31:01
14753
241±79
L,V 7.0 10−9 0.861 0.0 0.0 0.0 0.139 [64]
S190910d 2019-09-10
01:26:19
2482
632±186
H,L 3.7 10-9 0.0 0.976 0.0 0.0 0.024 [65]
S190910h 2019-09-10
08:29:58
24226
241±89
L 3.6 10-8 0.612 0.0 0.0 0.0 0.388 Detected by only the Livingston detector, resulting in a bad sky localization. [66]
S190915ak 2019-09-15 23:57:25
528
1557±381
H,L,V 9.7 10-10 0.0 0.0 0.995 0.0 0.0053 [67]
S190923y 2019-09-23 12:55:59
2107
438±133
H,L 4.8 10-8 0.0 0.677 0.0 0.0 0.322 [68]
S190924h 2019-09-24 02:18:46
303; towards Hydra or Cancer
514±132
H,L,V 8.9 10-19 0.0 0.0 0.0 ~1.0 4.7 10-11 [69]
S190930s 2019-09-30 13:35:41
1748
709±191
H,L 3.0 10-9 0.0 0.0 0.0 0.951 0.049 [70]
S190930t 2019-09-30 14:34:07
24220
108±38
L 1.5 10-8 0.0 0.743 0.0 0.0 0.257 Detected by only the Livingston detector, resulting in a bad sky localization; last detection of the O3a run. [71]
S191105e 2019-11-05 14:35:21
643
1183±281
H,L,V 2.3 10-8 0.0 0.0 0.953 0.0 0.047 First detection of the O3b run. [72]
S191109d 2019-11-09 01:07:17
1487
1810±604
H,L 1.5 10-13 0.0 0.0 0.9999978 0.0 0.0000022 [73]
S191129u 2019-11-29 13:40:29
852
742±180
H,L 2.7 10-35 0.0 0.0 ~1.0 0.0 1.2 10-27 [74]
S191204t 2019-12-04 17:15:25
103; towards Pictor, Caelum, or Eridanus
678±149
H,L,V 3.1 10-25 0.0 0.0 ~1.0 0.0 8.7 10-18 [75]
S191205ah 2019-12-05 21:52:08
6378
385±164
H,L,V 1.2 10-8 0.0 0.932 0.0 0.0 0.068 [76]

See also[edit]

Notes[edit]

  1. ^ Indirect evidence for gravitational waves was obtained by 1978 from observations of orbital decay in the neutron star binary PSR B1913+16.[1]
  2. ^ The detection date of a GW event is indicated by its designation; i.e., event GW150914 was detected on 2015-09-14.
  3. ^ The area of the sky within which it was possible to localize the source.
  4. ^ 1 Mpc is approximately 3.26 Mly.
  5. ^ c2M is about 1.8×103 foe; 1.8×1047 J; 1.8×1054 erg; 4.3×1046 cal; 1.7×1044 BTU; 5.0×1040 kWh, or 4.3×1037 tonnes of TNT.
  6. ^ The chirp mass is the binary parameter most relevant to the evolution of the inspiral gravitational waveform, and thus is the mass that can be measured most accurately. It is related to, but less than, the geometric mean of the binary masses, according to , thus ranging from ~87% of when the masses are the same to ~78% when they differ by an order of magnitude.
  7. ^ The dimensionless effective inspiral spin parameter is: [9] where is the mass of a black hole, is its spin, and is the angle between the orbital angular momentum and a merging black hole's spin (ranging from when aligned to when antialigned). It is the mass-weighted linear combination of the components of the black holes' spins aligned with the orbital axis[9][8] and has values ranging from −1 to 1 (the extremes correspond to situations with both black hole spins exactly antialigned and aligned, respectively, with orbital angular momentum).[10] This is the spin parameter most relevant to the evolution of the inspiral gravitational waveform, and it can be measured more accurately than those of the premerger BHs.[11]
  8. ^ Values of the dimensionless spin parameter cJ/GM2 for a black hole range from zero to a maximum of one. The macroscopic properties of an isolated astrophysical (uncharged) black hole are fully determined by its mass and spin. Values for other objects can potentially exceed one. The largest value known for a neutron star is ≤ 0.4, and commonly used equations of state would limit that value to < 0.7.[12]
  9. ^ Spin estimate is 0.26+0.52
    −0.24
    .[13]
  10. ^ Spin estimate is 0.32+0.54
    −0.29
    .[13]
  11. ^ Based on a descending spin-down chirp observed in GW post-merger, a magnetar was produced that survived at least 5 seconds.[23]
  12. ^ Besides the loss of mass due to GW emission that occurred during the merger, the event is thought to have ejected 0.05±0.02 M of material.[24]
  13. ^ The area of the sky within which it was possible to localize the source.
  14. ^ 1 Mpc is approximately 3.26 Mly.
  15. ^ Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
  16. ^ Probability that both components have mass < 3 M
  17. ^ Probability that one component has mass < 3 M and the other has mass > 5 M
  18. ^ Probability that both components have mass > 5 M
  19. ^ Probability that at least one component has a mass in the range 3-5 M, between those of known neutron stars and black holes
  20. ^ Probability that the source is terrestrial or non-cosmological (e.g. foreground noises and signals [e.g. "noise"] or a technical/systematic error ["glitch"])

References[edit]

  1. ^ "The Nobel Prize in Physics 1993". Nobel Foundation. Retrieved 2018-10-27. for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation
  2. ^ "GCN/LVC Notices". Goddard Space Flight Center. Retrieved 2019-11-11.
  3. ^ Fragione, Giacomo; et al. (26 November 2018). "Black Hole and Neutron Star Mergers in Galactic Nuclei". Monthly Notices of the Royal Astronomical Society. 488: 47–63. arXiv:1811.10627. doi:10.1093/mnras/stz1651.
  4. ^ Strickland, Ashley (3 May 2019). "Scientists may have detected violent collision between neutron star, black hole". CNN. Retrieved 3 May 2019.
  5. ^ The LIGO Scientific Collaboration; the Virgo Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B. (2019-09-04). "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs". Physical Review X. 9 (3): 031040. arXiv:1811.12907. doi:10.1103/PhysRevX.9.031040. ISSN 2160-3308.
  6. ^ LIGO (2019-11-01). "Welcome to O3b!". @ligo. Retrieved 2019-11-11.
  7. ^ a b c Nitz, Alexander H. (25 February 2019). "1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data". Astrophysical Journal. 872 (2): 195. arXiv:1811.01921. Bibcode:2019ApJ...872..195N. doi:10.3847/1538-4357/ab0108.
  8. ^ a b c d e f g h Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2019). "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs". Physical Review X. 9 (3): 031040. arXiv:1811.12907. doi:10.1103/PhysRevX.9.031040.
  9. ^ a b c Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (1 June 2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". Physical Review Letters. 118 (22): 221101. arXiv:1706.01812. Bibcode:2017PhRvL.118v1101A. doi:10.1103/PhysRevLett.118.221101. PMID 28621973.
  10. ^ Farr, W. M.; Stevenson, S.; Miller, M. C.; Mandel, I.; F arr, B.; Vecchio, A. (2017). "Distinguishing spin-aligned and isotropic black hole populations with gravitational waves". Nature. 548 (7667): 426–429. arXiv:1706.01385. Bibcode:2017Natur.548..426F. doi:10.1038/nature23453. PMID 28836595.
  11. ^ Vitale, S.; Lynch, R.; Raymond, V.; Sturani, R.; Veitch, J.; Graff, P. (2017). "Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors". Physical Review D. 95 (6): 064053. arXiv:1611.01122. Bibcode:2017PhRvD..95f4053V. doi:10.1103/PhysRevD.95.064053. hdl:1721.1/109575.
  12. ^ a b Abbott, B.P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225.
  13. ^ a b c The LIGO Scientific Collaboration and The Virgo Collaboration (3 June 2016). "An improved analysis of GW150914 using a fully spin-precessing waveform model". Physical Review X. 6 (4): 041014. arXiv:1606.01210. Bibcode:2016PhRvX...6d1014A. doi:10.1103/PhysRevX.6.041014.
  14. ^ Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (11 February 2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.
  15. ^ Tushna Commissariat (11 February 2016). "LIGO detects first ever gravitational waves – from two merging black holes". Physics World.
  16. ^ Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (21 October 2016). "Binary Black Hole Mergers in the first Advanced LIGO Observing Run". Physical Review X. 6 (4): 041015. arXiv:1606.04856. Bibcode:2016PhRvX...6d1015A. doi:10.1103/PhysRevX.6.041015.
  17. ^ Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters. 116 (24): 241103. arXiv:1606.04855. Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID 27367379.
  18. ^ Nemiroff, R.; Bonnell, J., eds. (15 June 2016). "GW151226: A Second Confirmed Source of Gravitational Radiation". Astronomy Picture of the Day. NASA.
  19. ^ Overbye, Dennis (1 June 2017). "Gravitational Waves Felt From Black-Hole Merger 3 Billion Light-Years Away". New York Times. Retrieved 1 June 2017.
  20. ^ Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (18 December 2017). "GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence". The Astrophysical Journal Letters. 851 (2): L35. arXiv:1711.05578. Bibcode:2017ApJ...851L..35A. doi:10.3847/2041-8213/aa9f0c.
  21. ^ Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2017-10-06). "GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence". Phys. Rev. Lett. 119 (14): 141101. arXiv:1709.09660. Bibcode:2017PhRvL.119n1101A. doi:10.1103/PhysRevLett.119.141101. PMID 29053306. Lay summary (PDF).
  22. ^ Overbye, Dennis (27 September 2017). "New Gravitational Wave Detection From Colliding Black Holes". The New York Times. Retrieved 28 September 2017.
  23. ^ van Putten, Maurice H.P.M.; Della Valle, Massimo (January 2019). "Observational evidence for extended emission to GW170817". Monthly Notices of the Royal Astronomical Society: Letters. 482 (1): L46–L49. arXiv:1806.02165. Bibcode:2019MNRAS.482L..46V. doi:10.1093/mnrasl/sly166.
  24. ^ Drout, M. R.; Piro, A. L.; Shappee, B. J.; et al. (2017-10-16). "Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis". Science. 358 (6370): 1570–1574. arXiv:1710.05443. Bibcode:2017Sci...358.1570D. doi:10.1126/science.aaq0049. PMID 29038375.
  25. ^ Abbott, B.P.; et al. (LIGO, Virgo and other collaborations) (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger" (PDF). The Astrophysical Journal. 848 (2): L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9.
  26. ^ Cho, Adrian (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. Retrieved 16 October 2017.
  27. ^ "Real-time alerts and circulars tracker" – via nasa.gov.
  28. ^ "Observing Plans and Public Alerts". www.ligo.org. LIGO Scientific Collaboration. October 2018. Retrieved 2018-10-28.
  29. ^ Singer, Leo P. (16 March 2017). "What constitutes an open, public alert?" (PDF). LSC (LIGO Scientific Collaboration). Retrieved 30 October 2018 – via gw-astronomy.org.
  30. ^ "GraceDB — Gravitational Wave Candidate Event Database" – via ligo.org.
  31. ^ "Real-time alerts and circulars tracker" – via nasa.gov.
  32. ^ "LIGO Announces Commissioning Break". LIGO Lab | Caltech. Retrieved 7 November 2019.
  33. ^ "KAGRA to Join LIGO and Virgo in Hunt for Gravitational Waves". LIGO Lab | Caltech. Retrieved 2019-10-06.
  34. ^ "Superevent info - S190408an". LIGO. Retrieved 9 April 2019.
  35. ^ XML file with preliminary information
  36. ^ "Superevent info - S190412m". LIGO. Retrieved 12 April 2019.
  37. ^ "Superevent info - S190421ar". LIGO. Retrieved 8 July 2019.
  38. ^ "Superevent info - S190425z". LIGO. Retrieved 25 April 2019.
  39. ^ "Breaking: LIGO Detects Gravitational Waves From Another Neutron Star Merger". 25 April 2019. Retrieved 25 April 2019.
  40. ^ "Superevent info - S190426c". LIGO. Retrieved 26 April 2019.
  41. ^ Castelvecchi, Davide (26 April 2019). "Gravitational waves hint at detection of black hole eating star". Nature. 569 (7754): 15–16. Bibcode:2019Natur.569...15C. doi:10.1038/d41586-019-01377-2. PMID 31040413.
  42. ^ Lundquist, M.J.; et al. (June 2019). "Searches After Gravitational-waves Using ARizona Observatories (SAGUARO): System Overview and First Resultsfrom Advanced LIGO/Virgo's Third Observing Run". The Astrophysical Journal. 881 (2): L26. arXiv:1906.06345. doi:10.3847/2041-8213/ab32f2.
  43. ^ "Superevent info - S190503bf". LIGO. Retrieved 3 May 2019.
  44. ^ "Superevent info - S190510g". LIGO. Retrieved 10 May 2019.
  45. ^ "Superevent info - S190512at". LIGO. Retrieved 12 May 2019.
  46. ^ "Superevent info - S190513bm". LIGO. Retrieved 13 May 2019.
  47. ^ "Superevent info - S190517h". LIGO. Retrieved 17 May 2019.
  48. ^ "Superevent info - S190519bj". LIGO. Retrieved 19 May 2019.
  49. ^ "Superevent info - S190521g". LIGO. Retrieved 21 May 2019.
  50. ^ "Superevent info - S190521r". LIGO. Retrieved 21 May 2019.
  51. ^ "Superevent info - S190602aq". LIGO. Retrieved 2 June 2019.
  52. ^ "Superevent info - S190630ag". LIGO. Retrieved 30 June 2019.
  53. ^ "Superevent info - S190701ah". LIGO. Retrieved 1 July 2019.
  54. ^ "Superevent info - S190706ai". LIGO. Retrieved 8 July 2019.
  55. ^ "Superevent info - S190707q". LIGO. Retrieved 8 July 2019.
  56. ^ "Superevent info - S190720a". LIGO. Retrieved 20 July 2019.
  57. ^ "Superevent info - S190727h". LIGO. Retrieved 13 August 2019.
  58. ^ "Superevent info - S190728q". LIGO. Retrieved 13 August 2019.
  59. ^ "Superevent info - S190814bv". LIGO. Retrieved 15 August 2019.
  60. ^ Starr, Michelle (16 August 2019). "Early Reports Indicate We May Have Detected a Black Hole And Neutron Star Collision". ScienceAlert.com. Retrieved 16 August 2019.
  61. ^ Mandelbum, Ryan F. (26 August 2019). "Mystery Deepens Around Newly Detected Ripples in Space-Time". Gizmodo. Retrieved 26 August 2019.
  62. ^ "Superevent info - S190818j". LIGO. Retrieved 28 August 2019.
  63. ^ "Superevent info - S190818l". LIGO. Retrieved 28 August 2019.
  64. ^ "Superevent info - S190901ap". LIGO. Retrieved 6 September 2019.
  65. ^ "Superevent info - S190910d". LIGO. Retrieved 10 September 2019.
  66. ^ "Superevent info - S190910h". LIGO. Retrieved 10 September 2019.
  67. ^ "Superevent info - S190915ak". LIGO. Retrieved 19 September 2019.
  68. ^ "Superevent info - S190923y". LIGO. Retrieved 24 September 2019.
  69. ^ "Superevent info - S190924h". LIGO. Retrieved 24 September 2019.
  70. ^ "Superevent info - S190930s". LIGO. Retrieved 30 September 2019.
  71. ^ "Superevent info - S190930t". LIGO. Retrieved 30 September 2019.
  72. ^ "Superevent info - S191105e". LIGO. Retrieved 5 November 2019.
  73. ^ "Superevent info - S191109d". LIGO. Retrieved 9 November 2019.
  74. ^ "Superevent info - S191129u". LIGO. Retrieved 8 December 2019.
  75. ^ "Superevent info - S191204r". LIGO. Retrieved 4 December 2019.
  76. ^ "Superevent info - S191205ah". LIGO. Retrieved 5 December 2019.

External links[edit]