Page semi-protected

List of largest stars

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Below is a list of the largest stars currently known, ordered by radius. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,288 mi).

The exact order of this list is incomplete, as great uncertainties remain, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or within a large range of values. Values for stellar radii vary significantly in sources and throughout the literature, mostly as the boundary of the very tenuous atmosphere (opacity) greatly differs depending on the wavelength of light in which the star is observed.

Radii of several stars can be directly obtained by stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test other indirect methods of finding true stellar size. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171).

Caveats

The extreme red hypergiant star VY Canis Majoris compared to the Sun and Earth's orbit.

Complex issues exist in determining the true radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Largest stars are usually expressed in units of the solar radius (R), where 1.00 R equals 695,700 kilometres.
  • Stellar radii or diameters are usually derived only approximately using Stefan-Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many supergiant stars have extended atmospheres, and many are embedded within opaque dust shells, making their true effective temperatures highly uncertain.
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.

Extragalactic large stars

In this list are some examples of more distant extragalactic stars, which may have slightly different properties and natures than the currently largest-known stars in the Milky Way:

List

List of the largest stars
Star name Solar radii
(Sun = 1)
Method[a] Notes
W60 B90 (WOH S264) 2,555[2] L/Teff Located in the Large Magellanic Cloud
LGGS J004520.67+414717.3 2,510[3] L/Teff Located in the Andromeda Galaxy
LGGS J004539.99+415404.1 2,337[3] L/Teff Located in the Andromeda Galaxy
Stephenson 2-18 2,150[4] L/Teff Located within the massive open cluster Stephenson 2, where 25 other red supergiants are also located. A calculation of the bolometric luminosity by fitting the spectral energy distribution (SED) gives the star a luminosity of nearly 440,000 L with an effective temperature of 3,200 K, which corresponds to a very large but extreme radius of 2,150 R, which would be considerably larger, cooler and more luminous than theoretical models of the largest, coolest, and most luminous possible red supergiants
WY Velorum 2,028[5] AD A symbiotic star containing a red supergiant, in the constellation of Vela
Orbit of Saturn 1,940-2,169 Reported for reference
LGGS J013250.70+304510.6 1,701[6] L/Teff An extreme yellow hypergiant located in the Triangulum Galaxy (M33)
WOH S71(LMC 23095) 1,662[7] L/Teff Located in the Large Magellanic Cloud
NML Cygni 1,639-2,770[8] L/Teff De beck et al. 2010 calculates 1,183 R,[9] although the quoted size was based on a more accurate measure of its distance combined with assumptions of its temperature
SMC 78282 (PMMR 198) 1,600[10] L/Teff Located in the Small Magellanic Cloud
RSGC1-F01 1,551[4] L/Teff Located in the open cluster RSGC1
RSGC1-F02 1,549[4] L/Teff Located in the open cluster RSGC1
WOH G64 1,540[11]–1,788[12] L/Teff Located in the Large Magellanic Cloud
Westerlund 1-26 1,530–1,580[13] L/Teff Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not.
HV 888 (WOH S140) 1,477[14] L/Teff Located in the Large Magellanic Cloud
VY Canis Majoris 1,420[15] AD & L/Teff VY CMa has been described as the largest star in the Milky Way although galactic red supergiants above are possibly larger but they have less accurate radius estimates.[16] Older estimates originally estimated the radius of VY CMa to be above 3,000 R,[17] or as little as 600 R.[18] The 1,420 R measure has a margin of error of ±120 R.[15]
LGGS J004428.48+415130.9 1,410[19] L/Teff Located in the Andromeda Galaxy
RU Herculis 1,392[20] L/Teff
IRAS 05280-6910 1,367[7] L/Teff Located in the Large Magellanic Cloud
S Persei 1,364±6[21] AD A red supergiant located in the Perseus Double Cluster. Levsque et al. 2005 calculated radii of 780 R and 1,230 R based on K-band measurements.[22] Older estimates gave up to 2,853 R based on higher luminosities.[23]
RV Camelopardalis 1,351[24] L/Teff
V688 Monocerotis 1,347[25] L/Teff Also one of the coolest stars at 1,670 K.[25]
RSGC1-F03 1,325[4] L/Teff Located in the open cluster RSGC1.
PMMR 62 1,313[10] L/Teff Located in the Small Magellanic Cloud
SMC 18136 (PMMR 37) 1,307[10] L/Teff Located in the Small Magellanic Cloud
LMC 170079 1,294[10] L/Teff Located in the Large Magellanic Cloud
LGGS J05294221-6857173 1,292[6] L/Teff
Z Doradus 1,271[10] L/Teff Located in the Large Magellanic Cloud
LGGS J004312.43+413747.1 1,270[19] L/Teff Located in the Andromeda Galaxy
LGGS J004514.91+413735.0 1,250[19] L/Teff Located in the Andromeda Galaxy
LGGS J004428.12+415502.9 1,240[19] L/Teff Located in the Andromeda Galaxy
RSGC1-F09 1,230[4] L/Teff Located in the open cluster RSGC1.
SMC 5092 (PMMR 9) 1,216[10] L/Teff Located in the Small Magellanic Cloud
LGGS J004125.23+411208.9 1,200[19] L/Teff Located in the Andromeda Galaxy
HV 2532 (WOH S287) 1,195[10] L/Teff Located in the Small Magellanic Cloud
HV 2084 (PMMR 186) 1,187[10] L/Teff Located in the Small Magellanic Cloud


RSGC1-F05 1,047[4] L/Teff Located in the open cluster RSGC1.
LGGS J004524.97+420727.2 1,170[19] L/Teff Located in the Andromeda Galaxy
RW Cephei 1,158[26]
LGGS J004047.22+404445.5 1,140[19] L/Teff Located in the Andromeda Galaxy
LGGS J004035.08+404522.3 1,140[19] L/Teff Located in the Andromeda Galaxy
SW Cephei 1,131[27] L/Teff
LGGS J004124.80+411634.7 1,130[19] L/Teff Located in the Andromeda Galaxy
LGGS J013233.77+302718.8 1,129[6] L/Teff Located in the Triangulum Galaxy
HV 2781 (WOH S470) 1,129[10] L/Teff Located in the Large Magellanic Cloud
SMC 56389 (PMMR 148) 1,128[10] L/Teff Located in the Small Magellanic Cloud
VX Sagittarii 1,120-1,550[28] L/Teff A pulsating variable star with a variation of over 7 magnitudes in visual brightness.
HV 2561(LMC 141430) 1,107[10] L/Teff Located in the Large Magellanic Cloud
LGGS J004107.11+411635.6 1,100[19] L/Teff Located in the Andromeda Galaxy
RSGC1-F08 1,087[4] L/Teff Located in the open cluster RSGC1.
LGGS J004031.00+404311.1 1,080[19] L/Teff Located in the Andromeda Galaxy
SMC 49478 (PMMR 115) 1,077[10] L/Teff Located in the Small Magellanic Cloud
Trumpler 27-1 1,073[27] L/Teff Located in the massive possible open cluster Trumpler 27
HV 897 (WOH S161) 1,073[10] L/Teff Located in the Large Magellanic Cloud
SMC 20133 (PMMR 41) 1,072[10] L/Teff Located in the Small Magellanic Cloud
LMC 174714 1,072[10] L/Teff Located in the Large Magellanic Cloud
LGGS J004531.13+414825.7 1,070[19] L/Teff Located in the Andromeda Galaxy
Orbit of Jupiter 1,064-1,173 Reported for reference
HV 11262 (PMMR 16) 1,067[10] L/Teff Located in the Small Magellanic Cloud
V766 Centauri Aa (HR 5171 Aa) 1,060–1,160[29] L/Teff
SMC 25879 (PMMR 54) 1,053[10] L/Teff Located in the Small Magellanic Cloud
WX Piscium 1,044[30] L/Teff
WOH G371 (LMC 146126) 1,043[10] L/Teff Located in the Large Magellanic Cloud
WOH S327 (LMC 142202) 1,043[10] L/Teff Located in the Large Magellanic Cloud
V358 Cassiopeiae 1,043[31] AD A red hypergiant star in the constellation of Cassiopeia.[20]
LGGS J004114.18+403759.8 1,040[19] L/Teff Located in the Andromeda Galaxy
ST Cephei 1,037[27] L/Teff
LGGS J004125.72+411212.7 1,020[19] L/Teff Located in the Andromeda Galaxy
LGGS J004059.50+404542.6 1,020[19] L/Teff Located in the Andromeda Galaxy
HV 986 (WOH S368) 1,010[32] L/Teff Located in the Large Magellanic Cloud
KW Sagittarii 1,009±142[33] AD
VV Cephei A 1,000[34] EB VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit. Data from the most recent eclipse has cast additional doubt on the accepted model of the system. Older estimates give up to 1,900 R[22]
RW Cygni 1,000[27] L/Teff
Sextans A 10 995[35] L/Teff Located in the dwarf irregular galaxy Sextans A
NR Vulpeculae 980[22] L/Teff
Mu Cephei (Herschel's "Garnet Star") 972[36] L/Teff Prototype of the obsolete class of the Mu Cephei variables and also one of reddest stars in the night sky in terms of the B-V color index.[37] Other estimates have given only 650 R based on much closer distances.[38] Margin of possible error: ±228 R[36]
S Cassiopeiae 934[39] L/Teff
HV 2112 (PMMR 187) 916[40] L/Teff Located in the Small Magellanic Cloud, most likely candidate for a Thorne-Żytkow object.
KU Andromedae 905[30] L/Teff
Betelgeuse (Alpha Orionis) 887[41] AD Star with the third largest apparent size after R Doradus and the Sun. Another estimate gives 955±217 R[42]
Sextans A 5 870[35] L/Teff Located in the dwarf irregular galaxy Sextans A
W Aquilae 862[39] L/Teff A red giant star, it's size could be as low as 400, but there are 2 estimates over 700
RT Carinae 861[27] L/Teff
V439 Puppis 840[20] L/Teff
VLH96 A 833[43] L/Teff
V558 Normae 832[27] L/Teff
IW Hydrae 823[30] L/Teff
BC Cygni 820[27] L/Teff
S Lyrae 819[39] L/Teff
V396 Centauri 808[27] L/Teff
R Andromedae 805[39] L/Teff
U Arietis 801[44] AD
RT Ophiuchi 801[44] AD
U Lacertae 785[27] L/Teff
HD 155737 767[27] L/Teff
CK Carinae 761[27] L/Teff
UY Scuti 755[27] L/Teff
Outer limits of the asteroid belt 750-900 Reported for reference
AZ Cygni 748[27] L/Teff
YZ Persei 746[27] L/Teff
S Cephei 745[25] L/Teff
UU Pegasi 742[44] AD
GU Cephei 730[5] AD
AD Persei 724[45] L/Teff
V641 Cassiopeiae 716[27] L/Teff
V Camelopardalis 716[44] AD
AG Camelopardalis 713[31] AD
M33 01 710[46] L/Teff
Sextans A 7 710[35] L/Teff Located in the dwarf irregular galaxy Sextans A
Antares A (Alpha Scorpii A) 707[5] (varies by 19%)[47] AD Antares was originally calculated to be over 850 R,[48][49] but those estimates are likely to have been affected by asymmetry of the atmosphere of the star.[50]
V407 Puppis 703[5] AD
LGGS J004255.95+404857.5 700-785[51] L/Teff Located in the Andromeda Galaxy
LGGS J003950.98+405422.5 700[19] L/Teff Located in the Andromeda Galaxy
LMC 169754 700[1] L/Teff Located in the Large Magellanic Cloud
LMC 65558 700[1] L/Teff Located in the Large Magellanic Cloud
WOH S66 (LMC 20355) 700[52] L/Teff Located in the Large Magellanic Cloud
V770 Cassiopeiae 700[5] AD
The following stars with sizes below 700 solar radii are kept here for comparison
V354 Cephei 685[27]-1,520[22] L/Teff
KY Cygni 672[27]-1,420[22] L/Teff
119 Tauri (CE Tauri) 587-593[53] (-608[54]) AD Can be occulted by the Moon, allowing accurate determination of its apparent diameter.
V382 Carinae (x Carinae) 485 ± 40[55] AD Yellow hypergiant, one of the rarest types of a star.
V509 Cassiopeiae 400–900[56] AD Yellow hypergiant, one of the rarest types of a star.
V1427 Aquilae 400–450[29] DSKE V1427 Aquilae may be a yellow hypergiant or a much less luminous star.
CW Leonis 390[57]-826[9] L/Teff Prototype of carbon stars. CW Leo was mistakenly identified as the claimed planet "Nibiru" or "Planet X".
Inner limits of the asteroid belt 380 Reported for reference
MY Cephei 363[27] Not to be confused with Mu Cephei (see above). Older estimates have given up to 2,440 R based on much cooler temperatures.[58]
AH Scorpii 360[27] L/Teff AH Sco is a variable by nearly 3 magnitudes in the visual range, and an estimated 20% in total luminosity. The variation in diameter is not clear because the temperature also varies.
V1302 Aquilae 357[59] L/Teff A yellow hypergiant that has increased its temperature into the LBV range. De beck et al. 2010 calculates 1,342 R based on a much cooler temperature.[9]
Mira A (Omicron Ceti) 332-402[60] AD Prototype Mira variable. De beck et al. 2010 calculates 541 R.[9]
Pistol Star 306[61] AD Blue hypergiant, among the most massive and luminous stars known.
R Doradus 298[62] AD Star with the second largest apparent size after the Sun.
Orbit of Mars 297-358 Reported for reference
La Superba (Y Canum Venaticorum) 289[5] AD Referred to as La Superba by Angelo Secchi. Currently one of the coolest and reddest stars.
Sun's red giant phase 256[63] At this point, the Sun will engulf Mercury and Venus, and possibly the Earth although it will move away from its orbit since the Sun will lose a third of its mass. During the helium burning phase, it will shrink to 10 R but will later grow again and become an unstable AGB star, and then a white dwarf after making a planetary nebula.[64][65] Reported for reference
Rho Cassiopeiae 242[5] AD Yellow hypergiant, one of the rarest types of a star.
Eta Carinae A ~240[66] Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, the size was much larger at around 1,400 R.[67] η Car is calculated to be between 60 R and 881 R.[68]
Orbit of Earth 215 (211-219) Reported for reference
Solar System Habitable Zone 200-520[69] (uncertain) Reported for reference
Orbit of Venus 154-157 Reported for reference
Epsilon Aurigae A (Almaaz A) 143-358[70] AD ε Aurigae was incorrectly claimed in 1970 as the largest star with a size between 2,000 R and 3,000 R,[71] even though it later turned out not to be an infrared light star but rather a dusk torus surrounding the system.
Deneb (Alpha Cygni) 99.84[5] AD Prototype Alpha Cygni variable.
Peony Star 92[72] AD Candidate for most luminous star in the Milky Way.
Canopus (Alpha Carinae) 71[73] AD Second brightest star in the night sky.
Orbit of Mercury 66-100 Reported for reference
LBV 1806-20 46-145[74] L/Teff Formerly a candidate for the most luminous star in the Milky Way with 40 million L,[75] but the luminosity has been revised later only 2 million L.[76][77]
Aldebaran (Alpha Tauri) 43.06[5] AD Fourteenth brightest star in the night sky
Polaris (Alpha Ursae Minoris) 37.5[78] AD The current northern pole star.
R136a1 28.8[79]-35.4[80] AD Also on record as the most massive and luminous star known (315 M and 8.71 million L).
Arcturus (Alpha Boötis) 24.25[5] AD Brightest star in the northern celestial hemisphere.
HDE 226868 20-22[81] The supergiant companion of black hole Cygnus X-1. The black hole is around 500,000 times smaller than the star.
Sun 1 The largest object in the Solar System.
Reported for reference
  1. ^ Methods for calculating the radius:
    • AD: radius determined from angular diameter and distance
    • L/Teff: radius calculated from bolometric luminosity and effective temperature
    • DSKE: radius calculated using the disk emission
    • EB: radius determined from observations of the eclipsing binary

See also

References

  1. ^ a b c Levesque, Emily M.; Massey, Philip; Olsen, K.A.G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417.
  2. ^ Ren, Yi; Jiang, Bi-Wei (2020-07-20). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. doi:10.3847/1538-4357/ab9c17. ISSN 1538-4357.
  3. ^ a b Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J. (July 2016). "Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-red Supergiant Evolution". The Astrophysical Journal. 825 (1): 50. doi:10.3847/0004-637X/825/1/50. ISSN 0004-637X.
  4. ^ a b c d e f g Fok, Thomas K. T; Nakashima, Jun-ichi; Yung, Bosco H. K; Hsia, Chih-Hao; Deguchi, Shuji (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv:1209.6427. Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65.
  5. ^ a b c d e f g h i j Cruzalèbes, P.; Petrov, R. G.; Robbe-Dubois, S.; Varga, J.; Burtscher, L.; Allouche, F.; Berio, P.; Hofmann, K. H.; Hron, J.; Jaffe, W.; Lagarde, S.; Lopez, B.; Matter, A.; Meilland, A.; Meisenheimer, K.; Millour, F.; Schertl, D. (2019). "A catalogue of stellar diameters and fluxes for mid-infrared interferometry". Monthly Notices of the Royal Astronomical Society. 490 (3): 3158–3176. arXiv:1910.00542. Bibcode:2019MNRAS.490.3158C. doi:10.1093/mnras/stz2803.
  6. ^ a b c Maria R. Drout; Philip Massey; Georges Meynet (2012). "The yellow and red supergiants of M33". The Astrophysical Journal. 750 (2): 97. arXiv:1203.0247. doi:10.1088/0004-637X/750/2/97.
  7. ^ a b Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708.
  8. ^ Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry". Astronomy & Astrophysics. 544: A42. arXiv:1207.1850. Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587.
  9. ^ a b c d De Beck, E.; Decin, L.; De Koter, A.; Justanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771.
  10. ^ a b c d e f g h i j k l m n o p q r s Dicenzo, Brooke; Levesque, Emily M. (April 2019). "Atomic Absorption Line Diagnostics for the Physical Properties of Red Supergiants". The Astronomical Journal. 157 (4). Bibcode:2019AJ....157..167D. doi:10.3847/1538-3881/ab01cb.
  11. ^ Levesque, Emily M; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G (June 2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744.
  12. ^ Groenewegen, Martin A. T.; Sloan, Greg C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and Red Supergiants". Astronomy & Astrophysics. 609: A114. doi:10.1051/0004-6361/201731089. ISSN 0004-6361.
  13. ^ Wright, N. J.; Wesson, R.; Drew, J. E.; Barentsen, G.; Barlow, M. J.; Walsh, J. R.; Zijlstra, A.; Drake, J. J.; Eisloffel, J.; Farnhill, H. J. (16 October 2013). "The ionized nebula surrounding the red supergiant W26 in Westerlund 1". Monthly Notices of the Royal Astronomical Society: Letters. 437 (1): L1–L5. arXiv:1309.4086. Bibcode:2014MNRAS.437L...1W. doi:10.1093/mnrasl/slt127.
  14. ^ Kamath, D.; Wood, P. R.; Van Winckel, H. (December 2015). "Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society. 454 (2): 1468–1502. arXiv:1508.00670. Bibcode:2015MNRAS.454.1468K. doi:10.1093/mnras/stv1202.
  15. ^ a b Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126.
  16. ^ Alcolea, J; Bujarrabal, V; Planesas, P; Teyssier, D; Cernicharo, J; De Beck, E; Decin, L; Dominik, C; Justtanont, K; De Koter, A; Marston, A. P; Melnick, G; Menten, K. M; Neufeld, D. A; Olofsson, H; Schmidt, M; Schöier, F. L; Szczerba, R; Waters, L. B. F. M (2013). "HIFISTARSHerschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: A93. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683.
  17. ^ Monnier, J. D; Millan-Gabet, R; Tuthill, P. G; Traub, W. A; Carleton, N. P; Coudé Du Foresto, V; Danchi, W. C; Lacasse, M. G; Morel, S; Perrin, G; Porro, I. L; Schloerb, F. P; Townes, C. H (2004). "High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer". The Astrophysical Journal. 605 (1): 436–461. arXiv:astro-ph/0401363. Bibcode:2004ApJ...605..436M. doi:10.1086/382218.
  18. ^ Massey, Philip; Levesque, Emily M.; Plez, Bertrand (August 2006). "Bringing VY Canis Majoris Down to Size: An Improved Determination of Its Effective Temperature". The Astrophysical Journal. 646 (2): 1203–1208. doi:10.1086/505025.
  19. ^ a b c d e f g h i j k l m n o p Massey, Philip; Evans, Kate Anne (2016). "The Red Supergiant Content of M31". The Astrophysical Journal. 826 (2): 224. arXiv:1605.07900. Bibcode:2016ApJ...826..224M. doi:10.3847/0004-637X/826/2/224.
  20. ^ a b c McDonald, I.; Zijlstra, A. A.; Boyer, M. L. (2012). "Fundamental Parameters and Infrared Excesses of Hipparcos Stars". Monthly Notices of the Royal Astronomical Society. 427 (1): 343–57. arXiv:1208.2037. Bibcode:2012MNRAS.427..343M. doi:10.1111/j.1365-2966.2012.21873.x.
  21. ^ Norris, Ryan P. (2019). Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants (PDF) (PhD). Georgia State University.
  22. ^ a b c d e Table 4 in Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901.
  23. ^ De Jager, C; Nieuwenhuijzen, H; Van Der Hucht, K. A (1988). "Mass loss rates in the Hertzsprung-Russell diagram". Astronomy and Astrophysics Supplement Series. 72: 259. Bibcode:1988A&AS...72..259D. ISSN 0365-0138.
  24. ^ Liu, Jiaming; Jiang, B. W.; Li, Aigen; Gao, Jian (April 2017). "On the silicate crystallinities of oxygen-rich evolved stars and their mass-loss rates". MNRAS. 466 (2): 1963–1986. Bibcode:2017MNRAS.466.1963L. doi:10.1093/mnras/stw3165. ISSN 0035-8711.
  25. ^ a b c Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280.
  26. ^ Stassun K.G.; et al. (October 2019). "The revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4). arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467.
  27. ^ a b c d e f g h i j k l m n o p q r s Messineo, M.; Brown, A. G. A. (2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal. 158 (1): 20. arXiv:1905.03744. Bibcode:2019AJ....158...20M. doi:10.3847/1538-3881/ab1cbd.
  28. ^ Xu, Shuangjing; Zhang, Bo; Reid, Mark J; Menten, Karl M; Zheng, Xingwu; Wang, Guangli (2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal. 859 (1): 14. arXiv:1804.00894. Bibcode:2018ApJ...859...14X. doi:10.3847/1538-4357/aabba6.
  29. ^ a b van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv:1910.02460. Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID 203836020.
  30. ^ a b c Schöier, F. L; Ramstedt, S; Olofsson, H; Lindqvist, M; Bieging, J. H; Marvel, K. B (2013). "The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type". Astronomy & Astrophysics. 550: A78. arXiv:1301.2129. Bibcode:2013A&A...550A..78S. doi:10.1051/0004-6361/201220400.
  31. ^ a b Bourgés, L.; Lafrasse, S.; Mella, G.; Chesneau, O.; Bouquin, J. L.; Duvert, G.; Chelli, A.; Delfosse, X. (May 2014). "The JMMC Stellar Diameters Catalog v2 (JSDC): A New Release Based on SearchCal Improvements". Astronomical Data Analysis Software and Systems XXIII. 485: 223. ISSN 1050-3390.
  32. ^ https://iopscience.iop.org/article/10.1086/520797/pdf
  33. ^ Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (6 June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics. 554: A76. doi:10.1051/0004-6361/201220920.
  34. ^ Pollmann, E.; Bennett, P. D.; Vollmann, W.; Somogyi, P. (July 2018). "Periodic Hα Emission in the Eclipsing Binary VV Cephei". Information Bulletin on Variable Stars. Bibcode:2018IBVS.6249....1P. doi:10.22444/IBVS.6249.
  35. ^ a b c Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics. 631. arXiv:1909.13378. Bibcode:2019A&A...631A..95B. doi:10.1051/0004-6361/201935212.
  36. ^ a b Montargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P.; Winters, J. M.; Le Bertre, T.; Richards, A. M. S. (2019). "NOEMA maps the CO J = 2 − 1 environment of the red supergiant μ Cep". Monthly Notices of the Royal Astronomical Society. 485 (2): 2417–2430. arXiv:1903.07129. Bibcode:2019MNRAS.485.2417M. doi:10.1093/mnras/stz397.
  37. ^ Ahad, Abdul (May 1, 2004). "The second 'Garnet Star' after Mu Cephei must be 119 Tauri!". Google Groups. Archived from the original on January 30, 2018. Retrieved January 30, 2018.
  38. ^ Tsuji, Takashi (2000). "Water in Emission in the Infrared Space Observatory Spectrum of the Early M Supergiant Star μ Cephei". The Astrophysical Journal Letters. 540 (2): 99–102. arXiv:astro-ph/0008058. Bibcode:2000ApJ...540L..99T. doi:10.1086/312879.
  39. ^ a b c d Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515–527. arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  40. ^ Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters. 443: L94–L98. arXiv:1406.0001. Bibcode:2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080.
  41. ^ Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Lan, Nguyen Quynh; Herczeg, Gregory J.; Dearborn, David S. P. (2017). "Evolutionary Tracks for Betelgeuse". The Astrophysical Journal. 819 (1): 7. arXiv:1406.3143. Bibcode:2016ApJ...819....7D. doi:10.3847/0004-637X/819/1/7.
  42. ^ Neilson, H. R.; Lester, J. B.; Haubois, X. (December 2011). "Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening". Astronomical Society of the Pacific. 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451: 117. arXiv:1109.4562. Bibcode:2010ASPC..425..103L.
  43. ^ Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M. (March 2017). "Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14". The Astrophysical Journal. 837 (1): 9. doi:10.3847/1538-4357/aa5c82. ISSN 0004-637X.
  44. ^ a b c d Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal. 124 (3): 1706. arXiv:astro-ph/0210167. Bibcode:2002AJ....124.1706V. doi:10.1086/342282.
  45. ^ Beasor, Emma R; Davies, Ben; Arroyo-Torres, B; Chiavassa, A; Guirado, J. C; Marcaide, J. M; Alberdi, A; De Wit, W. J; Hofmann, K. -H; Meilland, A; Millour, F; Mohamed, S; Sanchez-Bermudez, J (2018). "The evolution of red supergiant mass-loss rates" (PDF). Monthly Notices of the Royal Astronomical Society. 475 (1): 55. Bibcode:2018MNRAS.475...55B. doi:10.1093/mnras/stx3174.
  46. ^ https://www.aanda.org/articles/aa/pdf/2017/05/aa29146-16.pdf
  47. ^ Mark J. Pecaut; Eric E. Mamajek & Eric J. Bubar (February 2012). "A Revised Age for Upper Scorpius and the Star Formation History among the F-type Members of the Scorpius-Centaurus OB Association". Astrophysical Journal. 746 (2): 154. arXiv:1112.1695. Bibcode:2012ApJ...746..154P. doi:10.1088/0004-637X/746/2/154.
  48. ^ Pugh, T.; Gray, D. F. (2013-02-01). "On the Six-year Period in the Radial Velocity of Antares A". The Astronomical Journal. 145 (2): 38. Bibcode:2013AJ....145...38P. doi:10.1088/0004-6256/145/2/38. ISSN 0004-6256.
  49. ^ Baade, R.; Reimers, D. (2007-10-01). "Multi-component absorption lines in the HST spectra of alpha Scorpii B". Astronomy and Astrophysics. 474 (1): 229–237. Bibcode:2007A&A...474..229B. doi:10.1051/0004-6361:20077308. ISSN 0004-6361.
  50. ^ Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy & Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063.
  51. ^ Massey, Philip; Silva, David R; Levesque, Emily M; Plez, Bertrand; Olsen, Knut A. G; Clayton, Geoffrey C; Meynet, Georges; Maeder, Andre (2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703: 420–440. arXiv:0907.3767. Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420.
  52. ^ Van Loon, J. Th.; Groenewegen, M. A. T.; de Koter, A.; Trams, N. R.; Waters, L. B. F. M.; Zijlstra, A. A.; Whitelock, P. A.; Loup, C. (1999). "Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC". Astronomy and Astrophysics. 351 (2): 559–572. arXiv:astro-ph/9909416v1. Bibcode:1999A&A...351..559V.
  53. ^ Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614 (12): A12. arXiv:1802.06086. Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471.
  54. ^ Parker, Greg (July 2, 2012). "The second reddest star in the sky – 119 Tauri, CE Tauri". New Forest Observatory. Archived from the original on August 25, 2018. Retrieved January 4, 2019.
  55. ^ Groenewegen, M. A. T. (March 2020). "Analysing the spectral energy distributions of Galactic classical Cepheids". Astronomy and Astrophysics. 635. arXiv:2002.02186. Bibcode:2020A&A...635A..33G. doi:10.1051/0004-6361/201937060.CS1 maint: date and year (link)
  56. ^ Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void" (PDF). Astronomy & Astrophysics. 546: A105. Bibcode:2012A&A...546A.105N. doi:10.1051/0004-6361/201117166.
  57. ^ Men'shchikov1, A. B.; Balega, Y.; Blöcker, T.; Osterbart, R.; Weigelt, G. (2001). "Structure and physical properties of the rapidly evolving dusty envelope of IRC +10216 reconstructed by detailed two-dimensional radiative transfer modeling". Astronomy and Astrophysics. 392 (3): 921–929. arXiv:astro-ph/0206410. Bibcode:2002A&A...392..921M. doi:10.1051/0004-6361:20020954.
  58. ^ Fawley, W. M; Cohen, M (1974). "The open cluster NGC 7419 and its M7 supergiant IRC +60 375". Astrophysical Journal. 193: 367. Bibcode:1974ApJ...193..367F. doi:10.1086/153171.
  59. ^ Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal. 697 (1): 409–419. arXiv:0903.3714. Bibcode:2009ApJ...697..409D. doi:10.1088/0004-637X/697/1/409.
  60. ^ Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826.
  61. ^ Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816.
  62. ^ Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (2019). "Infrared Interferometric Three-dimensional Diagnosis of the Atmospheric Dynamics of the AGB Star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv:1908.06997. Bibcode:2019ApJ...883...89O. doi:10.3847/1538-4357/ab3d2a.
  63. ^ Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus. 151 (1): 130–137. Bibcode:2001Icar..151..130R. doi:10.1006/icar.2001.6591.
  64. ^ Schröder, K.-P.; Connon Smith, R. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  65. ^ Vassiliadis, E.; Wood, P.R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal. 413: 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
  66. ^ Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union. 5: 373–398. arXiv:0910.3158. Bibcode:2010HiA....15..373G. doi:10.1017/S1743921310009890.
  67. ^ Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society. 415 (3): 2020–2024. arXiv:1010.3770. Bibcode:2011MNRAS.415.2020S. doi:10.1111/j.1365-2966.2011.18607.x.
  68. ^ D. John Hillier; K. Davidson; K. Ishibashi; T. Gull (June 2001). "On the Nature of the Central Source in η Carinae". Astrophysical Journal. 553 (837): 837. Bibcode:2001ApJ...553..837H. doi:10.1086/320948.
  69. ^ Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8.
  70. ^ Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R.T.; Hutter, D.; Zhao, M.; Che, X.; Ten Brummelaar, T.A.; Farrington, C.D.; Parks, R.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Sallave-Goldfinger, P.J.; Turner, N.; Pedretti, E.; Thureau, N. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series. 220 (1): 14. arXiv:1508.01909. Bibcode:2015ApJS..220...14K. doi:10.1088/0067-0049/220/1/14.
  71. ^ "Ask Andy: The Biggest Star". Ottawa Citizen. Nov 27, 1970. p. 23.
  72. ^ Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics. 486 (3): 971. arXiv:0807.2476. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568.
  73. ^ Cruzalebes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K.; Spang, A.; Chesneau, O. (2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society. 434 (1): 437–450. arXiv:1306.3288. Bibcode:2013MNRAS.434..437C. doi:10.1093/mnras/stt1037.
  74. ^ Eikenberry, S. S.; Matthews, K.; Lavine, J. L.; Garske, M. A.; Hu, D.; Jackson, M. A.; Patel, S. G.; Barry, D. J.; Colonno, M. R.; Houck, J. R.; Wilson, J. C.; Corbel, S.; Smith, J. D. (2004). "Infrared Observations of the Candidate LBV 1806‐20 and Nearby Cluster Stars". The Astrophysical Journal. 616 (1): 506–518. arXiv:astro-ph/0404435. Bibcode:2004ApJ...616..506E. doi:10.1086/422180.
  75. ^ Kennedy, Meghan. "LBV 1806-20 AB?". SolStation.com. Archived from the original on 2017-11-13. Retrieved 2017-10-28.
  76. ^ Figer, D. F.; Najarro, F.; Kudritzki, R. P. (2004). "The Double-lined Spectrum of LBV 1806-20". The Astrophysical Journal. 610 (2): L109–L112. arXiv:astro-ph/0406316. Bibcode:2004ApJ...610L.109F. doi:10.1086/423306.
  77. ^ Nazé, Y.; Rauw, G.; Hutsemékers, D. (2012). "The first X-ray survey of Galactic luminous blue variables". Astronomy & Astrophysics. 538 (47): A47. arXiv:1111.6375. Bibcode:2012A&A...538A..47N. doi:10.1051/0004-6361/201118040.
  78. ^ Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society. 449 (1): 1011–1017. arXiv:1502.06463. Bibcode:2015MNRAS.449.1011F. doi:10.1093/mnras/stv412.
  79. ^ Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565 (27): A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696.
  80. ^ Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x.
  81. ^ Ziółkowski, J. (2005), "Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system", Monthly Notices of the Royal Astronomical Society, 358 (3): 851–859, arXiv:astro-ph/0501102, Bibcode:2005MNRAS.358..851Z, doi:10.1111/j.1365-2966.2005.08796.x Note: For radius, see Table 1 with d=2 kpc.

External links