List of mathematical symbols by subject

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The following list of mathematical symbols by subject features a selection of the most common symbols used in modern mathematical notation within formulas, grouped by mathematical topic. As it is impossible to know if a complete list existing today of all symbols used in history is a representation of all ever used in history, as this would necessitate knowing if extant records are of all usages, only those symbols which occur often in mathematics or mathematics education are included. Many of the characters are standardized, for example in DIN 1302 General mathematical symbols or DIN EN ISO 80000-2 Quantities and units โ€“ Part 2: Mathematical signs for science and technology.

The following list is largely limited to non-alphanumeric characters. It is divided by areas of mathematics and grouped within sub-regions. Some symbols have a different meaning depending on the context and appear accordingly several times in the list. Further information on the symbols and their meaning can also be found in the respective linked articles.

Guide[edit]

The following information is provided for each mathematical symbol:

Symbol
The symbol as it is represented by LaTeX. If there are several typographic variants, only one of the variants is shown.
Usage
An exemplary use of the symbol in a formula. Letters here stand as a placeholder for numbers, variables or complex expressions. Different possible applications are listed separately.
Articles with usage
Examples of Wikipedia articles in which the symbol is used.
LaTeX
The LaTeX command that creates the icon. Characters from the ASCII character set can be used directly, with a few exceptions (e.g., pound sign #, backslash \, braces {}, and percent sign %). High-and low-position is indicated via the ^ and _ characters, and is not explicitly specified.
HTML
The icon in HTML, if it is defined as a named mark. Non-named characters can be indicated in the form &#xnnnn by specifying the Unicode code point of the next column. High-and low-position can be indicated via <sup></sup> and <sub></sub>. The character × whose HTML code is times can be displayed by typing &times;.
Unicode
The code point of the corresponding Unicode character. Some characters are combining and require the entry of additional characters. For brackets, the code points of opening and closing forms are specified. The Unicode character ⨯ whose hexadecimal value is U+2A2F can be displayed by typing &#x2A2F; where #x indicates that the value in hexadecimal.

Numbers[edit]

Number sets[edit]

Symbol Unicode character Articles with usage LaTeX HTML Unicode Hex
๐”ธ Algebraic number \mathbb{A} &Aopf; U+1D538
โ„‚ Complex number \mathbb{C}, \Complex &Copf; U+2102
โ„ Quaternion \mathbb{H}, \mathbb{H} &quaternions; U+210D
โ„• Natural number \mathbb{N}, \N &Nopf; U+2115
๐•† Octonion \mathbb{O} &Oopf; U+1D546
โ„š Rational number \mathbb{Q}, \Q &Qopf; U+211A
โ„ Real number \mathbb{R}, \R &Ropf; U+211D
๐•Š Sedenion \mathbb{S} &Sopf; U+1D54A
โ„ค Integer \mathbb{Z}, \Z &Zopf; U+2124

Intervals[edit]

Symbol Usage LaTeX HTML Unicode Hex
( )
[ ]
&lpar; &rpar;
&lsqb; &rsqb;
U+0028/9
U+005B/D

Mathematical constants[edit]

Symbol Unicode character Articles with usage LaTeX HTML Template Unicode Hex Note
ฯ€ Pi \pi &pi; {{pi}} U+03C0
or e e (mathematics) e or \mathrm{e} e U+0065 Recommend {{mvar|e}} or {{math|e}} over e
ฯ• Golden ratio \phi &phi; {{phi}} U+03C6
ฯ† \varphi &straightphi; {{varphi}} U+03D5
or i Imaginary unit i or \mathrm{i} i U+0069 Recommend {{mvar|i}} or {{math|i}} over i
ฮณ Eulerโ€“Mascheroni constant \gamma &gamma; {{gamma}} U+03B3
ฮต Vacuum permittivity \epsilon &epsi; {{epsilon}} U+03B5
ฯต Dual number \varepsilon &varepsilon; {{varepsilon}} U+03F5
ฮธ Mills' constant \theta &theta; {{theta}} U+03B8
ฯ‘ \vartheta &vartheta; {{vartheta}} U+03D1
ฯƒ Somos' quadratic recurrence constant \sigma &sigma; {{sigma}} U+03C3
ฯ‚ \varsigma &varsigma; {{varsigma}} U+03C2
ฮบ Einstein gravitational constant \kappa &kappa; {{kappa}} U+03BA
ฮป Prouhetโ€“Thueโ€“Morse constant \lambda &lambda; {{lambda}} U+03BB
ฮผ Ramanujanโ€“Soldner constant \mu &mu; {{mu}} U+03BC
ฯ„ Prouhetโ€“Thueโ€“Morse constant \tau &tau; {{tau}} U+03C4

Complex numbers[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ„‘ Complex number \Im &image; U+2111
Im \operatorname{Im} Im
โ„œ \Re &Rfr; U+211C
Re \operatorname{Re} Re
โ—Œฬ„ Complex conjugate \bar &#x304; U+0304
โ—Œฬ„̄ \bar{\bar{}} &#x304;&#x304;
โ—Œฬ… \overline &#x305; U+0305
โ—Œฬ…̅ \overline{\overline{}} &#x305;&#x305;
* {}^\ast &ast; U+002A
| Absolute value \vert &VerticalLine; U+007C
Polar coordinate system \arg
Remark: real and imaginary parts of a complex number are often also denoted by and .

Elementary arithmetic operations[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex Notes
+ Addition + &plus; U+002B
โˆ’ Subtraction - &minus; U+2212
โ‹… Multiplication \cdot &sdot; U+22C5
โจฏ \times &times; U+2A2F
โˆถ  or  : Division (mathematics) :\colon &ratio; or &colon; U+003A or U+2236 In LaTeX, : added space around the colon that \colon does not .
โˆ• / &#x2215; U+2215
รท \div &divide; U+00F7
โ„ \frac{a}{b}
\tfrac{a}{b} (inline)
\dfrac{a}{b} (display)
\cfrac{a}{b} (continued fraction)
&frasl; U+2044 <sup>a</sup>โ„<sub>b</sub> renders as: aโ„b
โป Multiplicative inverse ^{-1} U+207B
โˆ’ Unary minus - &minus; U+2212
ยฑ Plus or minus sign \pm &plusmn; U+00B1
โˆ“ \mp &mnplus; U+2213

Elementary functions[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆš Square root \sqrt{} &radic; U+221A
โˆ› Cube root \sqrt[3]{x} &x221B; U+221B
โˆœ Fourth root \sqrt[4]{x} &x221C; U+221C
nth root \sqrt[n]{}
% Percentage \% &percnt; U+0025
( ) Order of operations ( ) &lpar; &rpar; U+0028/9
\left( \right)
[ ] Bracket [ ] &lsqb; &rsqb; U+005B/D
| | Absolute value |, \vert &VerticalLine; U+007C
{ } Fractional part \{ \}
\lbrace \rbrace
&lcub; &rcub; U+007B/D
โŒˆ โŒ‰ Floor and ceiling functions \lceil \rceil &lceil; &rceil; U+2308/9
โŒŠ โŒ‹ \lfloor \rfloor &lfloor; &rfloor; U+230A/B
โŒœ โŒ \ulcorner \urcorner &ulcorner; &urcorner; U+231C/D
โŒž โŒŸ \llcorner \lrcorner &llcorner; &lrcorner; U+231E/F
 ⌢​ Cap product \frown &frown; U+2322
 โŒฃ​ Cup product \smile &smile; U+2323

Note: the power function is not represented by its own icon, but by the positioning of the exponent as a superscript.

Arithmetic comparison[edit]

See also: Order relations, Set relations
Symbol Unicode character Usage LaTeX HTML Unicode Hex
< < &lt; U+003C
> > &gt; U+003E
โ‰ค \le, \leq &le; U+2264
โ‰ฅ \ge, \geq &ge; U+2265
โ‰ฆ \leqq &LessFullEqual; U+2266
โ‰ง \geqq &GreaterFullEqual; U+2267
โฉฝ \leqslant &LessSlantEqual U+2A7D
โฉพ \geqslant &GreaterSlantEqual U+2A7E
โ‰ช \ll &NestedLessLess; U+226A
โ‰ซ \gg &NestedGreaterGreater; U+226B
โ‰ฒ \lesssim &lsim; U+2272
โ‰ณ \gtrsim &GreaterTilde; U+2273
โช… \lessapprox &lessapprox; U+2A85
โช† \gtrapprox &gap; U+2A86
Symbol Unicode character Usage LaTeX HTML Unicode Hex
โ‰ถ \lessgtr &LessGreater U+2276
โ‰ท \gtrless &GreaterLess; U+2277
โ‹š \lesseqgtr &LessEqualGreater; U+22DA
โ‹› \gtreqless &GreaterEqualLess; U+22DB
โช‹ \lesseqqgtr &lesseqqgtr; U+2A8B
โชŒ \gtreqqless &gtreqqless; U+2A8C

Number theory[edit]

Divisibility and modulo[edit]

Symbol Unicode character Usage LaTeX HTML Unicode Hex
โˆฃ \mid &VerticalBar; U+2223
โˆค \nmid &NotVerticalBar; U+2224
โŠฅ \perp &perp; U+22A5
โŠ“ \sqcap &SquareIntersection; U+2293
โˆง \wedge &and; U+2227
โŠ” \sqcup &SquareUnion; U+2294
โˆจ \vee &or; U+2228
Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex Other information
โ‰ก Modulo operation \equiv &equiv; U+2261
mod \mod m mod <math>\mod</math> without a trailing symbol (e.g. ) will produce an error.
(mod) \pmod m (mod) <math>\pmod</math> without a trailing symbol (e.g. ) will produce an error.

Combinatorics[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
! Factorial ! &excl; U+0021
Derangement
Double factorial
( ) Combination \binom &lpar; &rpar; U+0028/9
Multinomial coefficient
(( )) Multiset (( )) &lpar; &rpar; U+0028/9
โ—Œฬ„ Pochhammer symbol \bar &#x304; U+0304
โ—Œฬ… \overline &#x305; U+0305
โ—Œฬฒ \underline &#x332; U+0332
# Primorial \# &num; U+0023

Stochastics[edit]

Probability theory[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
Probability measure P U+2119
Conditional probability \mid &VerticalLine; U+007C
/ U+2215
๐”ผ Expected value E &Eopf; U+1D53C
๐• Variance V &Vopf; U+1D54D
ฯƒ Standard deviation \sigma &sigma; U+03C3
Covariance
ฯ Correlation \rho &rho; U+03C1
โˆผ Probability distribution \sim &sim; U+223C
โ‰ˆ \approx &asymp; U+2248
โŠฅ Independence (probability theory) \perp &perp; U+22A5
Remark: for operators there are several notational variants; instead of round brackets also square brackets are used

Statistics[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ—Œฬ… Average \bar &#x304; U+0304
โ—Œฬ… \overline &#x305; U+0305
โŸจ โŸฉ \langle \rangle &lang; &rang; U+27E8/9
โ—Œฬ‚ Estimator \hat ̂ U+0302

Calculus[edit]

Sequences and series[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆ‘ Summation \sum &sum; U+2211
โˆ Product (mathematics) \prod &prod; U+220F
โˆ Coproduct \coprod &Coproduct; U+2210
( ) Sequence ( ) &lpar; &rpar; U+0028/9
โ†’ Limit of a sequence \to \rarr &rarr; U+2192
โˆž Infinity \infty &infin; U+221E

Limits[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ†’ Limit of a function \to
\rightarrow
&rarr;
&rightarrow;
U+2192
โŸถ \longrightarrow &LongRightArrow; U+27F6
โ†‘ \uparrow &uarr;
&ShortUpArrow;
U+2191
โ†— \nearrow &UpperRightArrow; U+2197
โ†˜ \searrow &LowerRightArrow; U+2198
โ†“ \downarrow &darr;
&ShortDownArrow;
U+2193
โ†™ \swarrow &LowerLeftArrow; U+2199
โ† \leftarrow &larr;
&ShortLeftArrow;
U+2190
โŸต \longleftarrow &longleftarrow; U+27F5
โ†– \nwarrow &UpperLeftArrow; U+2196
โบ ^+ &#8314; U+207A
โป ^- &#8315; U+207B
\lim
Limit inferior and limit superior \liminf
\limsup

Differential calculus[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex

โ€ฒ
Lagrange's notation
Prime (symbol)
'
^\prime
&prime; U+2032

โ€ณ
''
^{\prime\prime}
&Prime; U+2033

โ€ด
'''
^{\prime\prime\prime}
&tprime; U+2034

โ—
''''
^{\prime\prime\prime\prime}
&qprime; U+2057
^{IV} ^V ^{VI} <sup>IV</sup>
^{iv} ^v ^{vi} <sup>iv</sup>
โฝ โพ ^{( )} <sup>( )</sup> U+207D/E
โ—Œฬ‡ Newton's notation \dot &#x0307; U+0307
โ—Œฬˆ \ddot &#x0308; U+0308
d Leibniz's notation d d U+0064
โˆ‚ Partial derivative \partial &part; U+2202
โˆ‚ and | \left. \frac{\partial }{\partial x} \right\vert_x &part; and
&VerticalLine;
U+2202 and
U+007C

Integral calculus[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆซ , Integral \int &int; U+222B
โˆฌ Surface integral \iint &Int; U+222C
โˆญ Volume integral \iiint &tint; U+222D
โˆฎ Curve integral \oint &ContourIntegral; U+222E
\oiint โˆฏ \oiint Surface integral \oiint &DoubleContourIntegral; U+222F
\oiiint โˆฐ \oiiint Volume integral \oiiint &Cconint; U+2230

Vector calculus[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆ‡ Gradient \nabla &nabla; U+2207
Divergence
Curl (mathematics)
โˆ† Laplace operator \Delta &Delta; U+2206
โ–ก D'Alembert operator \square &#9633; U+25A1

Asymptotic behaviour[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆผ Asymptotic analysis \sim &sim; U+223C
o Big O notation o U+006F
๐’ช \mathcal{O} &Oscr; U+1D4AA
ฮ˜ \Theta &Theta; U+0398
ฮฉ \Omega &Omega; U+03A9
ฯ‰ \omega &omega; U+03C9

Linear algebra[edit]

Vectors and matrices[edit]

Symbol Articles with usage LaTeX
Vector (mathematics and physics) \begin{pmatrix}
...
\end{pmatrix}

or

\left(
\begin{array}{...}
...
\end{array}
\right)
Matrix (mathematics)

Vector operations[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ‹… Dot product

Inner product space

\cdot &sdot; U+22C5
( ) ( ) &lpar; &rpar; U+0028/9
โŸจ โŸฉ
\langle \rangle &lang; &rang; U+27E8/9
โจฏ Cross product \times &times; U+2A2F
[ ] [ ] &lsqb; &rsqb; U+005B/D
( ) Triple product ( ) &lpar; &rpar; U+0028/9
โŠ— Dyadic product \otimes &otimes; U+2297
โˆง Exterior algebra \wedge &and; U+2227
| | Euclidean norm \vert &VerticalLine; U+007C
โ€–
Norm (mathematics) \Vert\|
\lVert \rVert
&Vert; U+2016
̂ Unit vector \hat{} &#x302; U+0302

Matrix operations[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ‹… Matrix multiplication \cdot &sdot; U+22C5
โˆ˜ Hadamard product \circ &SmallCircle; U+2218
โŠ˜ Hadamard division \oslash &osol; U+2298
* Khatri-Rao product * &ast; U+002A
โŠ— Kronecker product \otimes &otimes; U+2297
โŠบ Transposed matrix ^\intercal &intercal; U+22BA
โŠค ^\top &top; U+22A4
T ^{\mathrm T} U+0054
* Conjugate transpose ^\ast &ast; U+002A
โ€  ^\dagger &dagger; U+2020
H ^H U+0048
โป Inverse matrix ^{-1} U+207B
+ Mooreโ€“Penrose pseudoinverse ^+ &plus; U+002B
| A | Determinant |, \vert &VerticalLine; U+007C
โ€– Matrix norm \|, \Vert &Vert; U+2016

Vector spaces[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
+ Direct sum of modules + &plus; U+002B
โŠ• \oplus &oplus; U+2295
โจฏ Direct product \times &times; U+2A2F
โŠ— Tensor product \otimes &otimes; U+2297
/ Quotient space (linear algebra) / &frasl; U+002F
โŸ‚ Orthogonal complement \perp &perp; U+27C2
* Dual space \ast &lowast; U+002A
0 0 U+0030
โŸจ โŸฉ Linear hull \langle \rangle &lang; &rang; U+27E8/9

Functional analysis[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ€ฒ Dual space \prime &prime; U+2032/3
โ€ณ
โ—Œฬ‚ Complete metric space \hat U+0302
โ†ช Embedding \hookrightarrow U+21AA

Logic[edit]

The current Wikipedia guidelines advise against unnecessary use of โˆ€, โˆƒ, and โ‡” and instead recommend writing out "for all", "there exists", and "if and only if." The same is true of abbreviations such as "iff", "s.t.", and "WLOG".

Equality signs[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
= Equality = &equals; U+003D
# Apartness relation \# &num; U+0023
โ‰  Inequality \neq
\ne
\not=
&ne; U+2260
โ‰ก Identity \equiv &equiv; U+2261
โ‰ˆ Approximation \approx &asymp; U+2248
โˆผ Equivalence class \sim &sim; U+223C
โˆ Proportionality \propto &prop; U+221D
โ‰™ Bijection \widehat{=} &wedgeq; U+2259
โ‰Ÿ Asks "is it equal to" \overset{?}{=} &questeq; U+225F
โ‰ Equal to by definition \overset{\operatorname{def}}{=} &#x225D; U+225D
โ‰œ \triangleq &trie; U+225C
โ‰” Assignment := &coloneq; U+2254
โ‰• =: &eqcolon; U+2255
โ‰ Approaches the limit \doteq &esdot; U+2250
โฉต Relational operator == &Equal; U+2A75

Logical operators[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆง Logical conjunction \land &and; U+2227
โˆจ Logical disjunction \lor &or; U+2228
โ‡” Logical equivalence \Leftrightarrow &hArr; U+21D4
โ†” \leftrightarrow &harr; U+2194
โŸบ \iff &Longleftrightarrow; U+27FA
โ‡’ Logical consequence \Rightarrow &rArr; U+21D2
โ†’ \rightarrow &rarr; U+2192
โŸน \implies &DoubleLongRightArrow; U+27F9
\Longrightarrow
โŠ• Exclusive or \oplus &oplus; U+2295
โŠป \veebar &veebar; U+22BB
โฉ’ \dot\lor U+2A52
ยฌ Logical negation \lnot &not; U+00AC
โ—Œฬ„ \bar &#x304; U+0304
̅ \overline &#x305; U+0305
โ—Œฬธ
\not
(ex: \not= \not\in)
&#x338;
(ex: =&#x338; &isin;&#x338;)
U+0338
โ† Converse implication \leftarrow &ShortLeftArrow; U+2190

Quantifiers[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆ€ Universal quantification \forall &forall; U+2200
โ‹€ \bigwedge &Wedge; U+22C0
โˆƒ Existential quantification \exists &exist; U+2203
โ‹ \bigvee &xvee; U+22C1
โˆƒ! Uniqueness quantification \exists! &exist;! U+2203!
โฉ’ \dot\bigvee U+2A52
โˆ„ Existential quantification \nexists &NotExists; U+2204

Deduction symbols[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โŠข Propositional calculus, Turnstile \vdash &vdash; U+22A2
โŠจ Inference \models &DoubleRightTee; U+22A8
Tautology (logic)
โŠค \top &top; U+22A4
โŠฅ Contradiction \bot &perp; U+22A5
โˆด Deductive reasoning \therefore &therefore; U+2234
โˆต \because &because; U+2235

End of proof symbols[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ–  ...as desired. Q.E.D. \blacksquare &#x25A0; U+25A0
โ–ก \Box &squ; U+25A1
โˆŽ Tombstone &#x220E; U+220E

Functions and category theory[edit]

Functions[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ†’ Function (mathematics) \to &rarr; U+2192
โ†ฆ \mapsto &mapstoright; U+21A6
( ) Image (mathematics) ( ) &lpar; &rpar; U+0028/9
[ ] [ ] &lbrack; or &rbrack; U+005B/D
| Restriction (mathematics) \vert &VerticalLine; U+007C
โ‹… Free variable \cdot &sdot; U+22C5
โป Inverse function -1 U+207B
โˆ˜ Function composition \circ &#8728; U+2218
โˆ— Convolution \ast &lowast; U+2217
โ—Œฬ‚ Fourier transform \hat U+0302

Morphisms[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ†’ Morphism \to &rarr; U+2192
โ†ฆ \mapsto &mapstoright; U+21A6
โฅฒ Isomorphism \tilde{\rightarrow} U+2972
โ†ช Monomorphism \hookrightarrow &#8618 U+21AA
โ†  Epimorphism \twoheadrightarrow &#8608 U+21A0

Constructions[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆ Product (category theory) \prod &prod; U+220F
โˆ Coproduct \coprod &Coproduct; U+2210
โŠ• Biproduct \oplus &CirclePlus; U+2295
ร— Pullback (category theory) \times &times; U+00D7

Set theory[edit]

Definition symbols[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
: Definition \colon &colon; U+003A

Set construction[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆ… Empty set \varnothing &varnothing;
&empty;
U+2205
\emptyset
{ } Set (mathematics) \{ \}
\lbrace \rbrace
&lcub; &rcub; U+007B/D
| \mid &VerticalLine; U+007C
: \colon &colon; U+003A
:

Separator symbols

To scale a set's braces \{ \} to the size of the set's content, use \left\{ \right\}. Wikipedia does not support \middle as that requires e-TeX, although \big|, \Big|, \bigg|, or \Bigg| can be used in place of \middle|. However, unlike with \mid, whitespace \; around the bar | must be inserted manually; for example: \;\big|\; or \mathrel{}\big|\mathrel{}.

Comparison of separators (the symbol between the variable and predicate)
Rendered result Latex code Notes on separator
\{x\in X : P(x)\} : inserts whitespace that \colon does not.
\{x\in X \colon P(x)\}
\{x\in X \mid P(x)\} \mid inserts whitespace that \vert does not.
\{x\in X \vert P(x)\} \vert and | are synonyms in LaTeX.
\{x\in X \vline P(x)\} \mid inserts whitespace that \vline does not.
\left\{\sum_{n=1}^{\infty} x^n : |x|<1\right\}
\left\{\sum_{n=1}^\infty x^n \mid |x|<1\right\}
\left\{\sum_{n=1}^\infty x^n \;\Bigg|\; |x|<1\right\} \;\Bigg|\; is used since neither \middle\mid, \Bigg\mid, nor \Bigg\vline render in Wikipedia.
\left\{\left.\sum_{n=1}^\infty x^n \;\right|\; |x|<1\right\} Using \left. \right| or \left| \right. is potentially an alternative to manual scaling.

Set operations[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆฉ Intersection (set theory) \cap &cap; U+2229
โ‹‚ \bigcap &xcap;
&Intersection;
U+22C2
โˆช Union (set theory) \cup &cup; U+222A
โ‹ƒ \bigcup &xcup;
&Union;
U+22C3
โˆ– Difference (set theory) \setminus &setminus;
&smallsetminus;
U+2216
\smallsetminus
โˆ† Symmetric difference \triangle &Delta; U+2206
โŠ– \ominus &CircleMinus; U+2296
โจฏ Cartesian product \times &times; U+2A2F
โฉ€ Intersection (set theory) \dot\cap &capdot; U+2A40
โŠ“ \sqcap &SquareIntersection; U+2293
โฉ„ \capwedge &capand; U+2A44
โŠ Disjoint union \dot\cup &cupdot; U+228D
โŠŽ \uplus &uplus; U+228E
โŠ” \sqcup &SquareUnion; U+2294
โซ› Transversal intersection \mlcp &mlcp; U+2ADB
โˆ Complement (set theory) \mathrm{C} &complement; U+2201
โ—Œฬ„ \bar &#x304; U+0304
โ—Œฬ… \overline{A} U+0305
๐’ซ Power set \mathcal{P} &Pscr; U+1D4AB
๐”“ \mathfrak{P} &Pfr; U+1D513
โ„˜ \wp &wp; U+2118
โ‹€ Infimum and supremum \bigwedge &Wedge; U+22C0
โ‹ \bigvee &xvee; U+22C1

Set relations[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โŠ‚ Subset \subset &sub; U+2282
โŠŠ \subsetneq &subne; U+228A
โŠ† \subseteq &sube; U+2286
โŸƒ A โŸƒ B \subsetcirc &#x27C3; U+27C3
โŠƒ Superset \supset &sup; U+2283
โŠ‹ \supsetneq &supne; U+228B
โŠ‡ \supseteq &supe; U+2287
โŸ„ A โŸ„ B \supsetcirc &#x27C4; U+27C4
โŠ„ \not\subset &nsub; U+2284
โŠ… Superset \not\supset &nsup; U+2285
โŠˆ \not\subseteq &NotSubsetEqual; U+2288
โŠ‰ Superset \not\supseteq &NotSupersetEqual; U+2289
โˆˆ Element (mathematics) \in &isin; U+2208
โˆ‹ \ni, \owns &ni; U+220B
โˆ‰ \notin, \not\in &notin; U+2209
โˆŒ \not\ni &NotReverseElement; U+220C
โŠ Substring \sqsubset &SquareSubset; U+228F
โŠ \sqsupset &SquareSuperset; U+2290
โŠ‘ \sqsubseteq &sqsubseteq; U+2291
โŠ’ \sqsupseteq &SquareSupersetEqual; U+2292

Note: The symbols and are used inconsistently and often do not exclude the equality of the two quantities.

Cardinality[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
| | Cardinality \vert &VerticalLine; U+007C
# \# &num; U+0023
๐”  Cardinality of the continuum \mathfrak{c} &cfr; U+1D520
โ„ต , , ... Aleph number \aleph &aleph; U+2135
โ„ถ , , ... Beth number \beth &beth; U+2136

Equivalence classes/relations[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
[ ] Equivalence class [ ] &lsqb; &rsqb; U+005B/D
/ Quotient set / &sol; U+002F
โˆผ Equivalence relation \sim &sim;, &Tilde; U+223C
โˆฝ \backsim &bsim; U+223D
โ‰ \not\sim, \nsim &nsim; U+2241
โ‰‚ \eqsim &EqualTilde; U+2242
โ‰ƒ \simeq &TildeEqual; U+2243
โ‰… \cong &TildeFullEqual; U+2245
โ‰‡ \not\cong, \ncong &NotTildeFullEqual; U+2247

Order theory[edit]

Comparions[edit]

See also: Arithmetic comparison, Set relations
Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ‰ค Order relation \leq, \le &leq;, &le; U+2264
โ‰ฅ \geq, \ge &geq;, &ge; U+2265
โ‰ฎ \nless &nlt;, &NotLess; U+226E
โ‰ฏ \ngtr &ngt;, &NotGreater; U+226F
โ‰ฐ \not\leq, \nleq &nle;, &NotLessEqual; U+2270
โ‰ฑ \not\geq, \ngeq &nge;, &NotGreaterEqual; U+2271
โ‰ฒ Inequality (mathematics) \lesssim &lsim;, &LessTilde; U+2272
โ‰ณ \gtrsim &gsim;, &GreaterTilde; U+2273
โ‰ด \not\lesssim &NotLessTilde; U+2274
โ‰ต \not\gtrsim &NotGreaterTilde; U+2275
โ‰บ Successor ordinal \prec &prec; U+227A
โ‰ป \succ &succ; U+227B
โ‰ผ \preccurlyeq &PrecedesSlantEqual; U+227C
โ‰ฝ \succcurlyeq &SucceedsSlantEqual; U+227D
โ‰พ \precsim &PrecedesTilde; U+227E
โ‰ฟ \succsim &SucceedsTilde; U+227F
โชฏ \preceq &PrecedesEqual; U+2AAF
โชฐ \succeq &SucceedsEqual; U+2AB0
โ‹ž \curlyeqprec &curlyeqprec; U+22DE
โ‹Ÿ \curlyeqsucc &curlyeqsucc; U+22DF
โ‹  \not\preceq &NotPrecedesSlantEqual; U+22E0
โ‹ก \not\succeq &NotSucceedsSlantEqual; U+22E1
โŠ Partially ordered set \sqsubset &sqsubset;
&SquareSubset;
U+228F
โŠ \sqsupset &sqsupset;
&SquareSuperset;
U+2290
โŠ‘ \sqsubseteq &sqsubseteq;
&SquareSubsetEqual;
U+2291
โŠ’ \sqsupseteq &sqsupseteq;
&SquareSupersetEqual;
U+2292
โ‹ข \not\sqsubseteq &NotSquareSubsetEqual; U+22E2
โ‹ฃ \not\sqsupseteq &NotSquareSupersetEqual; U+22E3

Binary relations[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
; ; Composition of relations ; &semi; U+003B
Operation (mathematics)
โ€ข \bullet &bull; U+2219
โˆ— \ast &lowast; U+2217
โป Converse relation T
โป Complementary relation \bar{R}
+ Transitive closure + U+002B
* Reflexive closure \ast &lowast; U+002A

Algebra[edit]

Group theory[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ‰ƒ Group isomorphism \simeq U+2243
โ‰… \cong &cong; U+2245
โจฏ Direct product \times &times; U+2A2F
โ‹Š Semidirect product \rtimes &rtimes; U+22CA
โ‰€ Wreath product \wr &VerticalTilde; U+2240
โ‰ค Subgroup \leq &le; U+2264
< \lt &lt; U+003C
โŠฒ Normal subgroup \vartriangleleft &RightTriangle; U+22B3
โŠด \trianglelefteq &LeftTriangleEqual; U+22B4
โ‹ช \not\vartriangleleft &ntriangleleft; U+22EA
โ‹ฌ \not\trianglelefteq &NotLeftTriangleEqual; U+22EC
โŠณ \vartriangleright &RightTriangle; U+22B3
โŠต \trianglerighteq &RightTriangleEqual; U+22B5
โ‹ซ \not\vartriangleright &NotRightTriangle; U+22EB
โ‹ญ \not\trianglerighteq &NotRightTriangleEqual; U+22ED
/ Quotient group / &frasl; U+002F
: Index of a subgroup \colon &colon; U+003A
โŸจ โŸฉ Generating set of a group \langle \rangle &lang; &rang; U+27E8/9
[ ] Commutator [ ] &lsqb; &rsqb; U+005B/D

Field theory[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
/ Field extension / &frasl; U+002F
| \mid &VerticalLine; U+007C
: \colon &colon; U+003A
Degree of a field extension
โ—Œฬ„ Algebraic closure \bar &#x304; U+0304
โ—Œฬ… \overline &#x305; U+0305
( ) Field extension, Algebraic number field ( ) &lpar; &rpar; U+0028/9
๐•‚ Field (mathematics) \mathbb{K} &Kopf; U+1D542
๐”ฝ Finite field \mathbb{F} &Fopf; U+1D53D

Ring theory[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆ— Group of units \ast &lowast; U+2217
โจฏ \times &times; U+2A2F
โŠฒ Ideal (ring theory) \vartriangleleft &LeftTriangle; U+22B2
/ Quotient ring / &frasl; U+002F
[ ] Polynomial ring [ ] &lsqb; &rsqb; U+005B/D
[ ] Formal power series [[ ]] &lsqb; &rsqb; U+005B/D

Geometry[edit]

Euclidean geometry[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
[ ] Line segment [ ] \left[ \right] &lsqb; &rsqb; U+005B/D
| | \vert &VerticalLine; U+007C
̅ \overline &#x305; U+0305
̲ \underline &#x332; U+0332
Euclidean vector
and Affine space
\vec &#x20D7; U+20D7
โˆ  Angle \angle &ang; U+2220
โ–ณ Triangle \triangle &bigtriangleup; U+25B3
โ–ก Quadrilateral \square &squ; U+25A1
โˆฅ Parallel (geometry) \parallel &shortparallel; U+2225
โˆฆ \nparallel &NotDoubleVerticalBar; U+2226
โŸ‚ Orthogonality \perp &perp; U+27C2

Differential geometry[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โ„’ Lie derivative \mathcal{L} &#x2112; U+2112
โŒŸ Interior product \mathbin{\lrcorner} &lrcorner; U+231F
๐œ„ \iota &#x1D704; U+1D704
โˆง Wedge product \wedge &wedge; U+2227
โ‹€ \bigwedge &Wedge; U+22C0

Topology[edit]

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
โˆ‚ Boundary (topology) \partial &part; U+2202
หš Interior (topology) \circ &deg; U+02DA
โ—Œฬ„ Closure (topology) \bar &#x304; U+0304
โ—Œฬ… \overline &#x305; U+0305
โ—Œฬ‡ Punctured neighbourhood \dot U+0307

Alphanumeric Symbols[edit]

Digits[edit]

Caption: Digits
Name Digits
Double-struck ๐Ÿ˜ ๐Ÿ™ ๐Ÿš ๐Ÿ› ๐Ÿœ ๐Ÿ ๐Ÿž ๐ŸŸ ๐Ÿ  ๐Ÿก

Alphabets[edit]

Caption: Alphabets
Name Sub-type Alphabet
Double-struck โ„‚ โ„ โ„• โ„™ โ„š โ„ โ„ค โ„ฝ โ„พ โ„ผ โ„ฟ โ…€
Mathematical ๐”ธ ๐”น โ„‚ ๐”ป ๐”ผ ๐”ฝ ๐”พ โ„ ๐•€ ๐• ๐•‚ ๐•ƒ ๐•„ โ„• ๐•† โ„™ โ„š โ„ ๐•Š ๐•‹ ๐•Œ ๐• ๐•Ž ๐• ๐• โ„ค
๐•’ ๐•“ ๐•” ๐•• ๐•– ๐•— ๐•˜ ๐•™ ๐•š ๐•› ๐•œ ๐• ๐•ž ๐•Ÿ ๐•  ๐•ก ๐•ข ๐•ฃ ๐•ค ๐•ฅ ๐•ฆ ๐•ง ๐•จ ๐•ฉ ๐•ช ๐•ซ
Italic โ…† โ…‡ โ…ˆ โ…‰ โ……
Script/Calligraphy Mathematical ๐’œ โ„ฌ ๐’ž ๐’Ÿ โ„ฐ โ„ฑ ๐’ข โ„‹ โ„ ๐’ฅ ๐’ฆ โ„’ โ„ณ ๐’ฉ ๐’ช ๐’ซ ๐’ฌ โ„› ๐’ฎ ๐’ฏ ๐’ฐ ๐’ฑ ๐’ฒ ๐’ณ ๐’ด ๐’ต
๐’ถ ๐’ท ๐’ธ ๐’น โ„ฏ ๐’ป โ„Š ๐’ฝ ๐’พ ๐’ฟ ๐“€ ๐“ ๐“‚ ๐“ƒ โ„ด ๐“… ๐“† ๐“‡ ๐“ˆ ๐“‰ ๐“Š ๐“‹ ๐“Œ ๐“ ๐“Ž ๐“
Mathematical Bold ๐“ ๐“‘ ๐“’ ๐““ ๐“” ๐“• ๐“– ๐“— ๐“˜ ๐“™ ๐“š ๐“› ๐“œ ๐“ ๐“ž ๐“Ÿ ๐“  ๐“ก ๐“ข ๐“ฃ ๐“ค ๐“ฅ ๐“ฆ ๐“ง ๐“จ ๐“ฉ
๐“ช ๐“ซ ๐“ฌ ๐“ญ ๐“ฎ ๐“ฏ ๐“ฐ ๐“ฑ ๐“ฒ ๐“ณ ๐“ด ๐“ต ๐“ถ ๐“ท ๐“ธ ๐“น ๐“บ ๐“ป ๐“ผ ๐“ฝ ๐“พ ๐“ฟ ๐”€ ๐” ๐”‚ ๐”ƒ
Fraktur Mathematical ๐”„ ๐”… โ„ญ ๐”‡ ๐”ˆ ๐”‰ ๐”Š โ„Œ โ„‘ ๐” ๐”Ž ๐” ๐” ๐”‘ ๐”’ ๐”“ ๐”” โ„œ ๐”– ๐”— ๐”˜ ๐”™ ๐”š ๐”› ๐”œ โ„จ
๐”ž ๐”Ÿ ๐”  ๐”ก ๐”ข ๐”ฃ ๐”ค ๐”ฅ ๐”ฆ ๐”ง ๐”จ ๐”ฉ ๐”ช ๐”ซ ๐”ฌ ๐”ญ ๐”ฎ ๐”ฏ ๐”ฐ ๐”ฑ ๐”ฒ ๐”ณ ๐”ด ๐”ต ๐”ถ ๐”ท
Mathematical Bold ๐•ฌ ๐•ญ ๐•ฎ ๐•ฏ ๐•ฐ ๐•ฑ ๐•ฒ ๐•ณ ๐•ด ๐•ต ๐•ถ ๐•ท ๐•ธ ๐•น ๐•บ ๐•ป ๐•ผ ๐•ฝ ๐•พ ๐•ฟ ๐–€ ๐– ๐–‚ ๐–ƒ ๐–„ ๐–…
๐–† ๐–‡ ๐–ˆ ๐–‰ ๐–Š ๐–‹ ๐–Œ ๐– ๐–Ž ๐–๐– ๐–‘ ๐–’ ๐–“ ๐–” ๐–• ๐–– ๐–— ๐–˜ ๐–™ ๐–š ๐–› ๐–œ ๐– ๐–ž ๐–Ÿ
Mono-space Mathematical ๐™ฐ ๐™ฑ ๐™ฒ ๐™ณ ๐™ด ๐™ต ๐™ถ ๐™ท ๐™ธ ๐™น ๐™บ ๐™ป ๐™ผ ๐™ฝ ๐™พ ๐™ฟ ๐š€ ๐š ๐š‚ ๐šƒ ๐š„ ๐š… ๐š† ๐š‡ ๐šˆ ๐š‰
๐šŠ ๐š‹ ๐šŒ ๐š ๐šŽ ๐š ๐š ๐š‘ ๐š’ ๐š“ ๐š” ๐š• ๐š– ๐š— ๐š˜ ๐š™ ๐šš ๐š› ๐šœ ๐š ๐šž ๐šŸ ๐š  ๐šก ๐šข ๐šฃ
Greek ฮ‘ ฮ’ ฮ“ แดฆ ฮ” ฮ• ฮ– ฮ— ฮ˜ ฮ™ ฮš ฮ› ฮœ ฮ ฮž ฮŸ ฮ  ฮก แฟฌ โ˜ง ฮฃ ฯน ฮค ฮฅ ฯ… ฮฆ ฮง ฮจ ฮฉ
ฮฑ ฮฒ แต แตฆ ฮณ แตž แตง ฮด แตŸ ฮต ฯต ฯถ ฮถ ฮท อฐ อฑ ฮธ ฯ‘ ฯด แถฟ ฮน แถฅ โ„ฉ ฮบ ฯฐ ฮป แดง ฮผ ยต ฮฝ ฮพ ฮฟ ฯ€ ฯ– ฯ แฟฅ แฟค ฯฑ ฯผ แดฉ แตจ ฯƒ ฯ‚ ฯฒ ฯฝ อป ฯพ อผ ฯฟ อฝ ฯ„ ฯ’ ฯ† ฯ• ฯ‡ แตก แตช ฯˆ แดช ฯ‰
Mathematical Italic ๐›ข ๐›ฃ ๐›ค ๐›ฅ ๐›ฆ ๐›ง ๐›จ ๐›ฉ ๐›ช ๐›ซ ๐›ฌ ๐›ญ ๐›ฎ ๐›ฏ ๐›ฐ ๐›ฑ ๐›ฒ ๐›ณ ๐›ด ๐›ต ๐›ถ ๐›ท ๐›ธ ๐›น ๐›บ ๐›ป
๐›ผ ๐›ฝ ๐›พ ๐›ฟ ๐œ• ๐œ€ ๐œ– ๐œ ๐œ‚ ๐œƒ ๐œ— ๐œ„ ๐œ… ๐œ˜ ๐œ† ๐œ‡ ๐œˆ ๐œ‰ ๐œŠ ๐œ‹ ๐œ› ๐œŒ ๐œš ๐œ ๐œŽ ๐œ ๐œ ๐œ‘ ๐œ™ ๐œ’ ๐œ“ ๐œ”
Non-Latin Italic ๐›ผ ๐›ฝ ๐›ค ๐›พ ๐›ฅ ๐›ฟ ๐œ€ ๐œ ๐œ‚ ๐›ฉ ๐œƒ ๐›ณ ๐œ— ๐œ„ ๐œ… ๐œ˜ ๐›ฌ ๐œ† ๐œ‡ ๐œˆ ๐›ฏ ๐œ‰ ๐›ฑ ๐œ‹ ๐œŒ ๐œš ๐›ด ๐œŽ ๐œ ๐œ ๐›ถ ๐œ ๐›ท ๐œ‘ ๐œ™ ๐œ’ ๐›น ๐œ“ ๐›บ ๐œ”
Mathematical Bold ๐šจ ๐šฉ ๐šช ๐šซ ๐šฌ ๐šญ ๐šฎ ๐šฏ ๐šฐ ๐šฑ ๐šฒ ๐šณ ๐šด ๐šต ๐šถ ๐šท ๐šธ ๐šน ๐šบ ๐šป ๐šผ ๐šฝ ๐šพ ๐šฟ ๐›€ ๐›
๐›‚ ๐›ƒ ๐›„ ๐›… ๐›› ๐›† ๐›œ ๐›‡ ๐›ˆ ๐›‰ ๐› ๐›Š ๐›‹ ๐›ž ๐›Œ ๐› ๐›Ž ๐› ๐› ๐›‘ ๐›ก ๐›’ ๐›  ๐›“ ๐›” ๐›• ๐›– ๐›— ๐›Ÿ ๐›˜ ๐›™ ๐›š
Mathematical Bold Italic ๐œœ ๐œ ๐œž ๐œŸ ๐œ  ๐œก ๐œข ๐œฃ ๐œค ๐œฅ ๐œฆ ๐œง ๐œจ ๐œฉ ๐œช ๐œซ ๐œฌ ๐œญ ๐œฎ ๐œฏ ๐œฐ ๐œฑ ๐œฒ ๐œณ ๐œด ๐œต
๐œถ ๐œท ๐œธ ๐œน ๐ ๐œบ ๐ ๐œป ๐œผ ๐œฝ ๐‘ ๐œพ ๐œฟ ๐€ ๐ ๐‚ ๐ƒ ๐„ ๐… ๐• ๐† ๐” ๐‡ ๐ˆ ๐‰ ๐Š ๐‹ ๐“ ๐Œ ๐’ ๐ ๐Ž
Double-struck โ„ฝ โ„พ โ„ผ โ„ฟ โ…€

Greek Letters[edit]

Greek alphabet
Name Greek Letter Bold Italic Bold Italic Sans-Serif Bold Sans-Serif Bold Italic APL Double struck bold Misc
Alpha ฮ‘ ฮฑ ๐šจ ๐›‚ ๐›ข ๐›ผ ๐œœ ๐œถ ๐– ๐ฐ ๐ž ๐žช โบ โถ
Beta ฮ’ ฮฒ แต แตฆ ๐šฉ ๐›ƒ ๐›ฃ ๐›ฝ ๐œ ๐œท ๐— ๐ฑ ๐ž‘ ๐žซ
Gamma ฮ“ ฮณ แดฆ แตž แตง ๐šช ๐›„ ๐›ค ๐›พ ๐œž ๐œธ ๐˜ ๐ฒ ๐ž’ ๐žฌ โ„พ โ„ฝ
Delta ฮ” ฮด แตŸ ๐šซ ๐›… ๐›ฅ ๐›ฟ ๐œŸ ๐œน ๐™ ๐ณ ๐ž“ ๐žญ
Epsilon ฮ• ฮต ฯต ฯถ ๐šฌ ๐›† ๐›ฆ ๐œ€ ๐œ  ๐œบ ๐š ๐ด ๐ž” ๐žฎ โท
Zeta ฮ– ฮถ ๐šญ ๐›‡ ๐›ง ๐œ ๐œก ๐œป ๐› ๐ต ๐ž• ๐žฏ
Eta ฮ— ฮท อฐ อฑ ๐šฎ ๐›ˆ ๐›จ ๐œ‚ ๐œข ๐œผ ๐œ ๐ถ ๐ž– ๐žฐ
Theta ฮ˜ ฮธ ฯ‘ ฯด แถฟ ๐šฏ ๐›‰ ๐šน ๐› ๐›ฉ ๐œƒ ๐›ณ ๐œ— ๐œฃ ๐œฝ ๐œญ ๐‘ ๐ ๐ท ๐šน ๐ž‹ ๐ž— ๐žฑ ๐œญ ๐Ÿ…
Iota ฮ™ ฮน แถฅ โ„ฉ ๐šฐ ๐›Š ๐›ช ๐œ„ ๐œค ๐œพ ๐ž ๐ธ ๐ž˜ ๐žฒ โณ โธ
Kappa ฮš ฮบ ฯฐ ๐šฑ ๐›‹ ๐›ž ๐›ซ ๐œ… ๐œ˜ ๐œฅ ๐œฟ ๐’ ๐Ÿ ๐น ๐žŒ ๐ž™ ๐žณ ๐Ÿ†
Lambda ฮ› ฮป แดง ๐šฒ ๐›Œ ๐›ฌ ๐œ† ๐œฆ ๐€ ๐  ๐บ ๐žš ๐žด
Mu ฮœ ฮผ ยต ๐šณ ๐› ๐›ญ ๐œ‡ ๐œง ๐ ๐ก ๐ป ๐ž› ๐žต
Nu ฮ ฮฝ ๐šด ๐›Ž ๐›ฎ ๐œˆ ๐œจ ๐‚ ๐ข ๐ผ ๐žœ ๐žถ
Xi ฮž ฮพ ๐šต ๐› ๐›ฏ ๐œ‰ ๐œฉ ๐ƒ ๐ฃ ๐ฝ ๐ž ๐žท
Omicron ฮŸ ฮฟ ๐šถ ๐› ๐›ฐ ๐œŠ ๐œช ๐„ ๐ค ๐พ ๐žž ๐žธ
Pi ฮ  ฯ€ ฯ– ๐šท ๐›‘ ๐›ฑ ๐œ‹ ๐œซ ๐… ๐ฅ ๐ฟ ๐žŸ ๐žน โ„ฟ โ„ผ โˆ โˆ
Rho ฮก ฯ แฟฌ แฟฅ แฟค ฯฑ ฯผ แดฉ แตจ โ˜ง ๐šธ ๐›’ ๐›  ๐›ฒ ๐œŒ ๐œš ๐œฌ ๐† ๐” ๐ฆ ๐ž€ ๐žŽ ๐ž  ๐žบ ๐Ÿˆ โด
Sigma ฮฃ ฯƒ ฯ‚ ฯน ฯฒ ฯฝ อป ฯพ อผ ฯฟ อฝ ๐šบ ๐›” ๐›“ ๐›ด ๐œŽ ๐œ ๐œฎ ๐ˆ ๐‡ ๐จ ๐ž‚ ๐ž ๐žข ๐žผ ๐žป โ…€ โˆ‘
Tau ฮค ฯ„ ๐šป ๐›• ๐›ต ๐œ ๐œฏ ๐‰ ๐ฉ ๐žƒ ๐žฃ ๐žฝ
Upsilon ฮฅ ฯ… ฯ’ ๐šผ ๐›– ๐›ถ ๐œ ๐œฐ ๐Š ๐ช ๐ž„ ๐žค ๐žพ
Phi ฮฆ ฯ† ฯ• ๐šฝ ๐›— ๐›Ÿ ๐›ท ๐œ‘ ๐œ™ ๐œฑ ๐‹ ๐“ ๐ซ ๐ž… ๐ž ๐žฅ ๐žฟ ๐Ÿ‡
Chi ฮง ฯ‡แตกแตชโ˜ง ๐šพ ๐›˜ ๐›ธ ๐œ’ ๐œฒ ๐Œ ๐ฌ ๐ž† ๐žฆ ๐Ÿ€
Psi ฮจ ฯˆ แดช ๐šฟ ๐›™ ๐›น ๐œ“ ๐œณ ๐ ๐ญ ๐ž‡ ๐žง ๐Ÿ
Omega ฮฉ ฯ‰ ๐›€ ๐›š ๐›บ ๐œ” ๐œด ๐Ž ๐ฎ ๐žˆ ๐žจ ๐Ÿ‚ โต โน

See also[edit]

Unicode and LaTeX

LaTeX

Unicode

Conventions and guidelines

Other

Bibliography[edit]

  • Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel (2011), Mathematik (in German) (2. ed.), Spektrum Akademischer Verlag, pp. 1483ff, ISBN 978-3-827-42347-4
  • Wolfgang Hackbusch (2010), Taschenbuch der Mathematik, Band 1 (in German) (3. ed.), Springer, pp. 1275ff, ISBN 978-3-835-10123-4
  • Deutsches Institut fรผr Normung: DIN 1302: Allgemeine mathematische Zeichen und Begriffe, Beuth-Verlag, 1999.
  • Deutsches Institut fรผr Normung: DIN 1303: Vektoren, Matrizen, Tensoren; Zeichen und Begriffe, Beuth-Verlag, 1987.
  • International Standards Organisation: DIN EN ISO 80000-2: GrรถรŸen und Einheiten โ€“ Teil 2: Mathematische Zeichen fรผr Naturwissenschaft und Technik, 2013.

Note: This article is a translation of the German Wikipedia article de:Liste mathematischer Symbole.

External links[edit]

LaTeX and Unicode

LaTeX

Unicode