Jump to content

List of pitch intervals

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Hyacinth (talk | contribs) at 05:25, 7 May 2016 (C{{music|43}}). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Comparison between tunings: Pythagorean, equal-tempered, 1/4-comma meantone, and others. For each, the common origin is arbitrarily chosen as C. The degrees are arranged in the order or the cycle of fifths; as in each of these tunings except just intonation all fifths are of the same size, the tunings appear as straight lines, the slope indicating the relative tempering with respect to Pythagorean, which has pure fifths (3:2, 702 cents). The Pythagorean A (at the left) is at 792 cents, G (at the right) at 816 cents; the difference is the Pythagorean comma. Equal temperament by definition is such that A and G are at the same level. 1/4 comma meantone produces the "just" major third (5:4, 386 cents, a syntonic comma lower than the Pythagorean one of 408 cents). 1/3 comma meantone produces the "just" minor third (6:5, 316 cents, a syntonic comma higher than the Pythagorean one of 294 cents). In both these meantone temperaments, the enharmony, here the difference between A and G, is much larger than in Pythagorean, and with the flat degree higher than the sharp one.

Below is a list of intervals exprimable in terms of a prime limit (see Terminology), completed by a choice of intervals in various equal subdivisions of the octave or of other intervals.

For commonly encountered harmonic or melodic intervals between pairs of notes in contemporary Western music theory, without consideration of the way in which they are tuned, see Interval (music) § Main intervals.

Terminology

  • The prime limit[1] henceforth referred to simply as the limit, is the largest prime number occurring in the factorizations of the numerator and denominator of the frequency ratio describing a rational interval. For instance, the limit of the just perfect fourth (4 : 3) is 3, but the just minor tone (10 : 9) has a limit of 5, because 10 can be factorized into 2·5 (and 9 in 3·3). There exists another type of limit, the odd limit, a concept used by Harry Partch (bigger of odd numbers obtained after dividing numerator and denominator by highest possible powers of 2), but it is not used here. The term "limit" was devised by Partch.[1]
  • By definition, every interval in a given limit can also be part of a limit of higher order. For instance, a 3-limit unit can also be part of a 5-limit tuning and so on. By sorting the limit columns in the table below, all intervals of a given limit can be brought together (sort backwards by clicking the button twice).
  • Pythagorean tuning means 3-limit intonation—a ratio of numbers with prime factors no higher than three.
  • Just intonation means 5-limit intonation—a ratio of numbers with prime factors no higher than five.
  • Septimal, undecimal, tridecimal, and septendecimal mean, respectively, 7, 11, 13, and 17-limit intonation.
  • Meantone refers to meantone temperament, where the whole tone is the mean of the major third. In general, a meantone is constructed in the same way as Pythagorean tuning, as a stack of fifths: the tone is reached after two fifths, the major third after four, so that as all fifths are the same, the tone is the mean of the third. In a meantone temperament, each fifth is narrowed ("tempered") by the same small amount. The most common of meantone temperaments is the quarter-comma meantone, in which each fifth is tempered by 1/4 of the syntonic comma, so that after four steps the major third (as C-G-D-A-E) is a full syntonic comma lower than the Pythagorean one. The extremes of the meantone systems encountered in historical practice are the Pythagorean tuning, where the whole tone corresponds to 9:8, i.e (3:2)2/2, the mean of the major third (3:2)4/4, and the fifth (3:2) is not tempered; and the 1/3-comma meantone, where the fifth is tempered to the extent that three ascending fifths produce a pure minor third.(See Meantone temperaments). The music program Logic Pro uses also 1/2-comma meantone temperament.
  • Equal-tempered refers to X-tone equal temperament with intervals corresponding to X divisions per octave.
  • Tempered intervals however cannot be expressed in terms of prime limits and, unless exceptions, are not found in the table below.
  • The table can also be sorted by frequency ratio, by cents, or alphabetically.

List

Column Legend
TET X-tone equal temperament (12-tet, etc.).
Limit 3-limit intonation, or Pythagorean.
5-limit "just" intonation, or just.
7-limit intonation, or septimal.
11-limit intonation, or undecimal.
13-limit intonation, or tridecimal.
17-limit intonation, or septendecimal.
19-limit intonation, or novendecimal.
Higher limits.
M Meantone temperament or tuning.
S Superparticular ratio (no separate color code).
List of musical intervals
Cents Note (from C) Freq. ratio Prime factors Interval name TET Limit M S
0.00
C[2] 1 : 1 1 : 1 play Unison,[3] monophony,[4] perfect prime,[3] tonic,[5] or fundamental 1, 12 3 M
0.40
C7- 4375 : 4374 54·7 : 2·37 play Ragisma[3][6] 7 S
0.72
E7777triple flat+ 2401 : 2400 74 : 25·3·52 play Breedsma[3][6] 7 S
1.00
21/1200 21/1200 play Cent[7] 1200
1.20
21/1000 21/1000 play Millioctave 1000
1.95
B++ 32805 : 32768 38·5 : 215 play Schisma[3][5] 5
3.99
101/1000 21/1000·51/1000 play Savart or eptaméride 301.03
7.71
B7 upside-down 225 : 224 32·52 : 25·7 play Septimal kleisma,[3][6] marvel comma 7 S
8.11
Bdouble sharp- 15625 : 15552 56 : 26·35 play Kleisma or semicomma majeur[3][6] 5
10.06
Adouble sharpdouble sharp++ 2109375 : 2097152 33·57 : 221 play Semicomma,[3][6] Fokker's comma[3] 5
11.98
C29 145 : 144 5·29 : 24·32 play Difference between 29:16 & 9:5 29 S
12.50
21/96 21/96 play Sixteenth tone 96
13.07
B7 upside-down7 upside-down7 upside-down- 1728 : 1715 26·33 : 5·73 play Orwell comma[3][8] 7
13.47
C43 129 : 128 3·43 : 27 play Hundred-twenty-ninth harmonic 43 S
13.79
Ddouble flat7 upside-down 126 : 125 2·32·7 : 53 play Small septimal semicomma,[6] small septimal comma,[3] starling comma 7 S
14.37
C- 121 : 120 112 : 23·3·5 play Undecimal seconds comma[3] 11 S
16.67
C[a] 21/72 21/72 play 1 step in 72 equal temperament 72
18.13
C19U 96 : 95 25·3 : 5·19 play Difference between 19:16 & 6:5 19 S
19.55
Ddouble flat--[2] 2048 : 2025 211 : 34·52 play Diaschisma,[3][6] minor comma 5
21.51
C+[2] 81 : 80 34 : 24·5 play Syntonic comma,[3][5][6] major comma, komma, chromatic diesis, or comma of Didymus[3][6][9][10] 5 S
22.64
21/53 21/53 play Holdrian comma, Holder's comma, 1 step in 53 equal temperament 53
23.46
B+++ 531441 : 524288 312 : 219 play Pythagorean comma,[3][5][6][9][10] ditonic comma[3][6] 3
25.00
21/48 21/48 play Eighth tone 48
26.84
C13 65 : 64 5·13 : 26 play Sixty-fifth harmonic,[5] 13th-partial chroma[3] 13 S
27.26
C7 upside-down- 64 : 63 26 : 32·7 play Septimal comma,[3][6][10] Archytas' comma,[3] 63rd subharmonic 7 S
29.27
21/41 21/41 play 1 step in 41 equal temperament 41
31.19
D7 56 : 55 23·7 : 5·11 play Ptolemy's enharmonic:[5] difference between (11 : 8) and (7 : 5) tritone 11 S
33.33
C/D[a] 21/36 21/36 play Sixth tone 36, 72
34.28
C17 51 : 50 3·17 : 2·52 play Difference between 17:16 & 25:24 17 S
34.98
B7 upside-down7 upside-down- 50 : 49 2·52 : 72 play Septimal sixth tone or jubilisma, Erlich's decatonic comma or tritonic diesis[3][6] 7 S
35.70
D77 49 : 48 72 : 24·3 play Septimal diesis, slendro diesis or septimal 1/6-tone[3] 7 S
38.05
C23 46 : 45 2·23 : 32·5 play Inferior quarter tone,[5] difference between 23:16 & 45:32 23 S
38.71
21/31 21/31 play 1 step in 31 equal temperament 31
38.91
C+ 45 : 44 32·5 : 4·11 play Undecimal diesis or undecimal fifth tone 11 S
40.00
21/30 21/30 play Fifth tone 30
41.06
Ddouble flat- 128 : 125 27 : 53 play Enharmonic diesis or 5-limit limma, minor diesis,[6] diminished second,[5][6] minor diesis or diesis,[3] 125th subharmonic 5
41.72
D41U7 42 : 41 2·3·7 : 41 play Lesser 41-limit fifth tone 41 S
42.75
C41 41 : 40 41 : 23·5 play Greater 41-limit fifth tone 41 S
43.83
C13 upside down 40 : 39 23·5 : 3·13 play Tridecimal fifth tone 13 S
44.97
C19U13 39 : 38 3·13 : 2·19 play Superior quarter-tone,[5] novendecimal fifth tone 19 S
46.17
D37U19double flat- 38 : 37 2·19 : 37 play Lesser 37-limit quarter tone 37 S
47.43
C37 37 : 36 37 : 22·32 play Greater 37-limit quarter tone 37 S
48.77
C7 upside-down 36 : 35 22·32 : 5·7 play Septimal quarter tone, septimal diesis,[3][6] septimal comma,[2] superior quarter tone[5] 7 S
49.98
246 : 239 3·41 : 239 play Just quarter tone[10] 239
50.00
Chalf sharp/Dthree quarter flat 21/24 21/24 play Equal-tempered quarter tone 24
50.18
D17 upside down7 35 : 34 5·7 : 2·17 play ET quarter-tone approximation,[5] lesser 17-limit quarter tone 17 S
50.72
B7 upside-down++ 59049 : 57344 310 : 213·7 play Harrison's comma (9 P5s - 1 H7)[3] 7
51.68
C17 34 : 33 2·17 : 3·11 play Greater 17-limit quarter tone 17 S
53.27
C 33 : 32 3·11 : 25 play Thirty-third harmonic,[5] undecimal comma, undecimal quarter tone 11 S
54.96
D31U- 32 : 31 25 : 31 play Inferior quarter-tone,[5] thirty-first subharmonic 31 S
56.55
B2323+ 529 : 512 232 : 29 play Five-hundred-twenty-ninth harmonic 23
56.77
C31 31 : 30 31 : 2·3·5 play Greater quarter-tone,[5] difference between 31:16 & 15:8 31 S
58.69
C29U 30 : 29 2·3·5 : 29 play Lesser 29-limit quarter tone 29 S
60.75
C297 upside-down 29 : 28 29 : 22·7 play Greater 29-limit quarter tone 29 S
62.96
D7- 28 : 27 22·7 : 33 play Septimal minor second, small minor second, inferior quarter tone[5] 7 S
63.81
(3 : 2)1/11 31/11 : 21/11 play Beta scale step 18.75
65.34
C13 upside down+ 27 : 26 33 : 2·13 play Chromatic diesis,[11] tridecimal comma[3] 13 S
66.67
C/C[a] 21/18 21/18 play Third tone 18, 36, 72
67.90
D13double flat- 26 : 25 2·13 : 52 play Tridecimal third tone, third tone[5] 13 S
70.67
C[2] 25 : 24 52 : 23·3 play Just chromatic semitone or minor chroma,[3] lesser chromatic semitone, small (just) semitone[10] or minor second,[4] minor chromatic semitone,[12] or minor semitone,[5] 2/7-comma meantone chromatic semitone 5 S
73.68
D23U- 24 : 23 23·3 : 23 play Lesser 23-limit semitone 23 S
76.96
C23+ 23 : 22 23 : 2·11 play Greater 23-limit semitone 23 S
78.00
(3 : 2)1/9 31/9 : 21/9 play Alpha scale step 15.39
79.31
67 : 64 67 : 26 play Sixty-seventh harmonic[5] 67
80.54
C7 upside-down- 22 : 21 2·11 : 3·7 play Hard semitone,[5] two-fifth tone small semitone 11 S
84.47
D7 21 : 20 3·7 : 22·5 play Septimal chromatic semitone, minor semitone[3] 7 S
88.80
C19U 20 : 19 22·5 : 19 play Novendecimal augmented unison 19 S
90.22
D--[2] 256 : 243 28 : 35 play Pythagorean minor second or limma,[3][6][10] Pythagorean diatonic semitone, Low Semitone[13] 3
92.18
C+[2] 135 : 128 33·5 : 27 play Greater chromatic semitone, chromatic semitone, semitone medius, major chroma or major limma,[3] small limma,[10] major chromatic semitone,[12] limma ascendant[5] 5
93.60
D19- 19 : 18 19 : 2·9 Novendecimal minor secondplay 19 S
97.36
D↓↓ 128 : 121 27 : 1111 play 121st subharmonic[5][6] 11
98.95
D17 upside down 18 : 17 2·32 : 17 play Just minor semitone, Arabic lute index finger[3] 17 S
100.00
C/D 21/12 21/12 play Equal-tempered minor second or semitone 12 M
104.96
C17[2] 17 : 16 17 : 24 play Minor diatonic semitone, just major semitone, overtone semitone,[5] 17th harmonic,[3] limma[citation needed] 17 S
111.73
D-[2] 16 : 15 24 : 3·5 play Just minor second,[14] just diatonic semitone, large just semitone or major second,[4] major semitone,[5] limma, minor diatonic semitone,[3] diatonic second[15] semitone,[13] diatonic semitone,[10] 1/6-comma meantone minor second 5 S
113.69
C++ 2187 : 2048 37 : 211 play apotome[3][10] or Pythagorean major semitone,[6] Pythagorean augmented unison, Pythagorean chromatic semitone, or Pythagorean apotome 3
116.72
(18 : 5)1/19 21/19·32/19 : 51/19 play Secor 10.28
119.44
C7 upside-down 15 : 14 3·5 : 2·7 play Septimal diatonic semitone, major diatonic semitone,[3] Cowell semitone[5] 7 S
128.30
D13 upside down7 14 : 13 2·7 : 13 play Lesser tridecimal 2/3-tone[16] 13 S
130.23
C23+ 69 : 64 3·23 : 26 play Sixty-ninth harmonic[5] 23
133.24
D 27 : 25 33 : 52 play Semitone maximus, minor second, large limma or Bohlen-Pierce small semitone,[3] high semitone,[13] alternate Renaissance half-step,[5] large limma, acute minor second[citation needed] 5
133.33
C/D[a] 21/9 22/18 play Two-third tone 9, 18, 36, 72
138.57
D13- 13 : 12 13 : 22·3 play Greater tridecimal 2/3-tone,[16] Three-quarter tone[5] 13 S
150.00
Cthree quarter sharp/Dhalf flat 23/24 21/8 play Equal-tempered neutral second 8, 24
150.64
D↓[2] 12 : 11 22·3 : 11 play 3/4-tone or Undecimal neutral second,[3][5] trumpet three-quarter tone,[10] middle finger [between frets][13] 11 S
155.14
D7 35 : 32 5·7 : 25 play Thirty-fifth harmonic[5] 7
160.90
D-- 800 : 729 25·52 : 36 play Grave whole tone,[3] neutral second, grave major second[citation needed] 5
165.00
D-[2] 11 : 10 11 : 2·5 play Greater undecimal minor/major/neutral second, 4/5-tone[6] or Ptolemy's second[3] 11 S
171.43
21/7 21/7 play 1 step in 7 equal temperament 7
179.70
71 : 64 71 : 26 play Seventy-first harmonic[5] 71
180.45
Edouble flat--- 65536 : 59049 216 : 310 play Pythagorean diminished third,[3][6] Pythagorean minor tone 3
182.40
D-[2] 10 : 9 2·5 : 32 play Small just whole tone or major second,[4] minor whole tone,[3][5] lesser whole tone,[15] minor tone,[13] minor second,[10] half-comma meantone major second 5 S
200.00
D 22/12 21/6 play Equal-tempered major second 6, 12 M
203.91
D[2] 9 : 8 32 : 23 play Pythagorean major second, Large just whole tone or major second[10] (sesquioctavan),[4] tonus, major whole tone,[3][5] greater whole tone,[15] major tone[13] 3 S
223.46
Edouble flat-[2] 256 : 225 28 : 32·52 play Just diminished third[15] 5
227.79
73 : 64 73 : 26 play Seventy-third harmonic[5] 73
231.17
D7 upside-down-[2] 8 : 7 23 : 7 play Septimal major second,[4] septimal whole tone[3][5] 7 S
240.00
21/5 21/5 play 1 step in 5 equal temperament 5
251.34
D37 37 : 32 37 : 25 play Thirty-seventh harmonic[5] 37
253.08
D- 125 : 108 53 : 22·33 play Semi-augmented whole tone,[3] semi-augmented second[citation needed] 5
262.37
E↓ 64 : 55 26 : 5·11 play 55th subharmonic[5][6] 11
268.80
D2313 299 : 256 13·23 : 28 play Two-hundred-ninety-ninth harmonic 23
266.87
E7[2] 7 : 6 7 : 2·3 play Septimal minor third[3][4][10] or Sub minor third[13] 7 S
274.58
D[2] 75 : 64 3·52 : 26 play Just augmented second,[15] Augmented tone,[13] augmented second[5][12] 5
294.13
E-[2] 32 : 27 25 : 33 play Pythagorean minor third[3][5][6][13][15] semiditone, or 27th subharmonic 3
297.51
E19[2] 19 : 16 19 : 24 play 19th harmonic,[3] 19-limit minor third, overtone minor third[5] 19
300.00
D/E 23/12 21/4 play Equal-tempered minor third 4, 12 M
301.85
D7 upside-down- 25 : 21[5] 52 : 3·7 play Quasi-equal-tempered minor third, 2nd 7-limit minor third, Bohlen-Pierce second[3][6] 7
310.26
6:5÷(81:80)1/4 22 : 53/4 play Quarter-comma meantone minor third M
311.98
(3 : 2)4/9 34/9 : 24/9 play Alpha scale minor third 3.85
315.64
E[2] 6 : 5 2·3 : 5 play Just minor third,[3][4][5][10][15] minor third,[13] 1/3-comma meantone minor third 5 M S
317.60
D++ 19683 : 16384 39 : 214 play Pythagorean augmented second[3][6] 3
320.14
E7 77 : 64 7·11 : 26 play Seventy-seventh harmonic[5] 11
336.13
D177 upside-down- 17 : 14 17 : 2·7 play Superminor third[17] 17
337.15
E+ 243 : 200 35 : 23·52 play Acute minor third[3] 5
342.48
E13 39 : 32 3·13 : 25 play Thirty-ninth harmonic[5] 13
342.86
22/7 22/7 play 2 steps in 7 equal temperament 7
342.91
E7 upside-down- 128 : 105 27 : 3·5·7 play 105th subharmonic,[5] septimal neutral third[6] 7
347.41
E-[2] 11 : 9 11 : 32 play Undecimal neutral third[3][5] 11
350.00
Dthree quarter sharp/Ehalf flat 27/24 27/24 play Equal-tempered neutral third 24
359.47
E13 upside down[2] 16 : 13 24 : 13 play Tridecimal neutral third[3] 13
364.54
79 : 64 79 : 26 play Seventy-ninth harmonic[5] 79
364.81
E- 100 : 81 22·52 : 34 play Grave major third[3] 5
384.36
F-- 8192 : 6561 213 : 38 play Pythagorean diminished fourth,[3][6] Pythagorean 'schismatic' third[5] 3
386.31
E[2] 5 : 4 5 : 22 play Just major third,[3][4][5][10][15] major third,[13] quarter-comma meantone major third 5 M S
397.10
E237+ 161 : 128 7·23 : 27 play One-hundred-sixty-first harmonic 23
400.00
E 24/12 21/3 play Equal-tempered major third 3, 12 M
407.82
E+[2] 81 : 64 34 : 26 play Pythagorean major third,[3][5][6][13][15] ditone 3
417.51
F7+[2] 14 : 11 2·7 : 11 play Undecimal diminished fourth or major third[3] 11
427.37
F[2] 32 : 25 25 : 52 play Just diminished fourth,[15] diminished fourth,[5][12] 25th subharmonic 5
429.06
E41 41 : 32 41 : 25 play Forty-first harmonic[5] 41
435.08
E7 upside-down[2] 9 : 7 32 : 7 play Septimal major third,[3][5] Bohlen-Pierce third,[3] Super major Third[13] 7
444.77
F↓ 128 : 99 27 : 9·11 play 99th subharmonic[5][6] 11
450.05
83 : 64 83 : 26 play Eighty-third harmonic[5] 83
454.21
F13 13 : 10 13 : 2·5 play Tridecimal major third or diminished fourth 13
456.99
E[2] 125 : 96 53 : 25·3 play Just augmented third, augmented third[5] 5
462.35
E7 upside-down7 upside-down- 64 : 49 26 : 72 play 49th subharmonic[5][6] 7
470.78
F7+[2] 21 : 16 3·7 : 24 play Twenty-first harmonic, narrow fourth,[3] septimal fourth,[5] wide augmented third,[citation needed] H7 on G 7
478.49
E+ 675 : 512 33·52 : 29 play Wide augmented third[3] 5
480.00
22/5 22/5 play 2 steps in 5 equal temperament 5
491.27
E17 85 : 64 5·17 : 26 play Eighty-fifth harmonic[5] 17
498.04
F[2] 4 : 3 22 : 3 play Perfect fourth,[3][5][15] Pythagorean perfect fourth, Just perfect fourth or diatessaron[4] 3 S
500.00
F 25/12 25/12 play Equal-tempered perfect fourth 12 M
510.51
(3 : 2)8/11 38/11 : 28/11 play Beta scale perfect fourth 18.75
511.52
F43 43 : 32 43 : 25 play Forty-third harmonic[5] 43
514.29
23/7 23/7 play 3 steps in 7 equal temperament 7
519.55
F+[2] 27 : 20 33 : 22·5 play 5-limit wolf fourth, acute fourth,[3] imperfect fourth[15] 5
521.51
E+++ 177147 : 131072 311 : 217 play Pythagorean augmented third[3][6] (F+ (pitch)) 3
531.53
F29+ 87 : 64 3·29 : 26 play Eighty-seventh harmonic[5] 29
551.32
F[2] 11 : 8 11 : 23 play eleventh harmonic,[5] undecimal tritone,[5] lesser undecimal tritone, undecimal semi-augmented fourth[3] 11
568.72
F[2] 25 : 18 52 : 2·32 play Just augmented fourth[3][5] 5
570.88
89 : 64 89 : 26 play Eighty-ninth harmonic[5] 89
582.51
G7[2] 7 : 5 7 : 5 play Lesser septimal tritone, septimal tritone[3][4][5] Huygens' tritone or Bohlen-Pierce fourth,[3] septimal fifth,[10] septimal diminished fifth[18] 7
588.27
G-- 1024 : 729 210 : 36 play Pythagorean diminished fifth,[3][6] low Pythagorean tritone[5] 3
590.22
F+[2] 45 : 32 32·5 : 25 play Just augmented fourth, just tritone,[4][10] tritone,[6] diatonic tritone,[3] 'augmented' or 'false' fourth,[15] high 5-limit tritone,[5] 1/6-comma meantone augmented fourth 5
600.00
F/G 26/12 21/2=√2 play Equal-tempered tritone 2, 12 M
609.35
G137 91 : 64 7·13 : 26 play Ninety-first harmonic[5] 13
609.78
G-[2] 64 : 45 26 : 32·5 play Just tritone,[4] 2nd tritone,[6] 'false' fifth,[15] diminished fifth,[12] low 5-limit tritone,[5] 45th subharmonic 5
611.73
F++ 729 : 512 36 : 29 play Pythagorean tritone,[3][6] Pythagorean augmented fourth, high Pythagorean tritone[5] 3
617.49
F7 upside-down[2] 10 : 7 2·5 : 7 play Greater septimal tritone, septimal tritone,[4][5] Euler's tritone[3] 7
628.27
F23+ 23 : 16 23 : 24 play Twenty-third harmonic,[5] classic diminished fifth[citation needed] 23
631.28
G[2] 36 : 25 22·32 : 52 play Just diminished fifth[5] 5
646.99
F31+ 93 : 64 3·31 : 26 play Ninety-third harmonic[5] 31
648.68
G↓[2] 16 : 11 24 : 11 play ` undecimal semi-diminished fifth[3] 11
665.51
47 : 32 47 : 25 play Forty-seventh harmonic[5] 47
678.49
Adouble flat--- 262144 : 177147 218 : 311 play Pythagorean diminished sixth[3][6] 3
680.45
G- 40 : 27 23·5 : 33 play 5-limit wolf fifth,[5] or diminished sixth, grave fifth,[3][6][10] imperfect fifth,[15] 5
683.83
G19 95 : 64 5·19 : 26 play Ninety-fifth harmonic[5] 19
684.82
E232323double sharp++ 12167 : 8192 233 : 213 play 12167th harmonic 23
691.20
3:2÷(81:80)1/2 2·51/2 : 3 play Half-comma meantone perfect fifth M
694.79
3:2÷(81:80)1/3 21/3·51/3 : 31/3 play 1/3-comma meantone perfect fifth M
695.81
3:2÷(81:80)2/7 21/7·52/7 : 31/7 play 2/7-comma meantone perfect fifth M
696.58
3:2÷(81:80)1/4 51/4 play Quarter-comma meantone perfect fifth M
697.65
3:2÷(81:80)1/5 31/5·51/5 : 21/5 play 1/5-comma meantone perfect fifth M
698.37
3:2÷(81:80)1/6 31/3·51/6 : 21/3 play 1/6-comma meantone perfect fifth M
700.00
G 27/12 27/12 play Equal-tempered perfect fifth 12 M
701.89
231/53 231/53 play 53-TET perfect fifth 53
701.96
G[2] 3 : 2 3 : 2 play Perfect fifth,[3][5][15] Pythagorean perfect fifth, Just perfect fifth or diapente,[4] fifth,[13] Just fifth[10] 3 S
702.44
224/41 224/41 play 41-TET perfect fifth 41
703.45
217/29 217/29 play 29-TET perfect fifth 29
719.90
97 : 64 97 : 26 play Ninety-seventh harmonic[5] 97
721.51
Adouble flat- 1024 : 675 210 : 33·52 play Narrow diminished sixth[3] 5
729.22
G7 upside-down- 32 : 21 24 : 3·7 play 21st subharmonic[5][6] 7
733.23
F2317double sharp+ 391 : 256 17·23 : 28 play Three-hundred-ninety-first harmonic 23
737.65
A77+ 49 : 32 7·7 : 25 play Forty-ninth harmonic[5] 7
743.01
Adouble flat 192 : 125 26·3 : 53 play Classic diminished sixth[3] 5
755.23
G 99 : 64 32·11 : 26 play Ninety-ninth harmonic[5] 11
764.92
A7[2] 14 : 9 2·7 : 32 play Septimal minor sixth[3][5] 7
772.63
G 25 : 16 52 : 24 play Just augmented fifth[5][15] 5
782.49
G-[2] 11 : 7 11 : 7 play Undecimal minor sixth,[5] undecimal augmented fifth,[3] Fibonacci numbers 11
789.85
101 : 64 101 : 26 play Hundred-first harmonic[5] 101
792.18
A-[2] 128 : 81 27 : 34 play Pythagorean minor sixth,[3][5][6] 81st subharmonic 3
800.00
G/A 28/12 22/3 play Equal-tempered minor sixth 3, 12 M
806.91
G17 51 : 32 3·17 : 25 play Fifty-first harmonic[5] 17
813.69
A[2] 8 : 5 23 : 5 play Just minor sixth[3][4][10][15] 5
815.64
G++ 6561 : 4096 38 : 212 play Pythagorean augmented fifth,[3][6] Pythagorean 'schismatic' sixth[5] 3
823.80
103 : 64 103 : 26 play Hundred-third harmonic[5] 103
832.18
G23+ 207 : 128 32·23 : 27 play Two-hundred-seventh harmonic 23
833.09
51/2+1 : 2 play Golden ratio (833 cents scale)
833.11
233 : 144 233 : 24·32 play Golden ratio approximation (833 cents scale) 233
835.19
A+ 81 : 50 34 : 2·52 play Acute minor sixth[3] 5
840.53
A13[2] 13 : 8 13 : 23 play Tridecimal neutral sixth,[3] overtone sixth,[5] thirteenth harmonic 13
850.00
Gthree quarter sharp/Ahalf flat 217/24 217/24 play Equal-tempered neutral sixth 24
852.59
A↓[2] 18 : 11 2·32 : 11 play Undecimal neutral sixth,[3][5] Zalzal's neutral sixth 11
857.10
A7+ 105 : 64 3·5·7 : 26 play Hundred-fifth harmonic[5] 7
857.14
25/7 25/7 play 5 steps in 7 equal temperament 7
862.85
A- 400 : 243 24·52 : 35 play Grave major sixth[3] 5
873.51
53 : 32 53 : 25 play Fifty-third harmonic[5] 53
879.86
A↓7 upside-down 128 : 77 27 : 7·11 play 77th subharmonic[5][6] 11
882.40
Bdouble flat--- 32768 : 19683 215 : 39 play Pythagorean diminished seventh[3][6] 3
884.36
A[2] 5 : 3 5 : 3 play Just major sixth,[3][4][5][10][15] Bohlen-Pierce sixth,[3] 1/3-comma meantone major sixth 5 M
889.76
107 : 64 107 : 26 play Hundred-seventh harmonic[5] 107
900.00
A 29/12 23/4 play Equal-tempered major sixth 4, 12 M
902.49
A19U 32 : 19 25 : 19 play 19th subharmonic[5][6] 19
905.87
A+[2] 27 : 16 33 : 24 play Pythagorean major sixth[3][5][10][15] 3
921.82
109 : 64 109 : 26 play Hundred-ninth harmonic[5] 109
925.42
Bdouble flat-[2] 128 : 75 27 : 3·52 play Just diminished seventh,[15] diminished seventh,[5][12] 75th subharmonic 5
925.79
A2319+ 437 : 256 19·23 : 28 play Four-hundred-thirty-seventh harmonic 23
933.13
A7 upside-down[2] 12 : 7 22·3 : 7 play Septimal major sixth[3][4][5] 7
937.63
A 55 : 32 5·11 : 25 play Fifty-fifth harmonic[5][19] 11
953.30
A37+ 111 : 64 3·37 : 26 play Hundred-eleventh harmonic[5] 37
955.03
A[2] 125 : 72 53 : 23·32 play Just augmented sixth[5] 5
957.21
(3 : 2)15/11 315/11 : 215/11 play 15 steps in Beta scale 18.75
960.00
24/5 24/5 play 4 steps in 5 equal temperament 5
968.83
B7[2] 7 : 4 7 : 22 play Septimal minor seventh,[4][5][10] harmonic seventh,[3][10] augmented sixth[citation needed] 7
976.54
A+[2] 225 : 128 32·52 : 27 play Just augmented sixth[15] 5
984.22
113 : 64 113 : 26 play Hundred-thirteenth harmonic[5] 113
996.09
B-[2] 16 : 9 24 : 32 play Pythagorean minor seventh,[3] Small just minor seventh,[4] lesser minor seventh,[15] just minor seventh,[10] Pythagorean small minor seventh[5] 3
999.47
B19 57 : 32 3·19 : 25 play Fifty-seventh harmonic[5] 19
1000.00
A/B 210/12 25/6 play Equal-tempered minor seventh 6, 12 M
1014.59
A23+ 115 : 64 5·23 : 26 play Hundred-fifteenth harmonic[5] 23
1017.60
B[2] 9 : 5 32 : 5 play Greater just minor seventh,[15] large just minor seventh,[4][5] Bohlen-Pierce seventh[3] 5
1019.55
A+++ 59049 : 32768 310 : 215 play Pythagorean augmented sixth[3][6] 3
1028.57
26/7 26/7 play 6 steps in 7 equal temperament 7
1029.58
B29 29 : 16 29 : 24 play Twenty-ninth harmonic,[5] minor seventh[citation needed] 29
1035.00
B↓[2] 20 : 11 22·5 : 11 play Lesser undecimal neutral seventh, large minor seventh[3] 11
1039.10
B+ 729 : 400 36 : 24·52 play Acute minor seventh[3] 5
1044.44
B13 117 : 64 32·13 : 26 play Hundred-seventeenth harmonic[5] 13
1044.86
B7 upside-down- 64 : 35 26 : 5·7 play 35th subharmonic,[5] septimal neutral seventh[6] 7
1049.36
B-[2] 11 : 6 11 : 2·3 play 21/4-tone or Undecimal neutral seventh,[3] undecimal 'median' seventh[5] 11
1050.00
Athree quarter sharp/Bhalf flat 221/24 27/8 play Equal-tempered neutral seventh 8, 24
1059.17
59 : 32 59 : 25 play Fifty-ninth harmonic[5] 59
1066.76
B- 50 : 27 2·52 : 33 play Grave major seventh[3] 5
1073.78
B717 119 : 64 7·17 : 26 play Hundred-nineteenth harmonic[5] 17
1086.31
C-- 4096 : 2187 212 : 37 play Pythagorean diminished octave[3][6] 3
1088.27
B[2] 15 : 8 3·5 : 23 play Just major seventh,[3][5][10][15] small just major seventh,[4] 1/6-comma meantone major seventh 5
1095.04
C17 upside down 32 : 17 25 : 17 play 17th subharmonic[5][6] 17
1100.00
B 211/12 211/12 play Equal-tempered major seventh 12 M
1102.64
B- 121 : 64 112 : 26 play Hundred-twenty-first harmonic[5] 11
1107.82
C'- 256 : 135 28 : 33·5 play Octave − major chroma,[3] narrow diminished octave[citation needed] 5
1109.78
B+[2] 243 : 128 35 : 27 play Pythagorean major seventh[3][5][6][10] 3
1116.89
61 : 32 61 : 25 play Sixty-first harmonic[5] 61
1129.33
C'[2] 48 : 25 24·3 : 52 play Classic diminished octave,[3][6] large just major seventh[4] 5
1131.02
B41 123 : 64 3·41 : 26 play Hundred-twenty-third harmonic[5] 41
1137.04
B7 upside-down 27 : 14 33 : 2·7 play Septimal major seventh[5] 7
1145.04
B31 31 : 16 31 : 24 play Thirty-first harmonic,[5] augmented seventh[citation needed] 31
1146.73
C↓ 64 : 33 26 : 3·11 play 33rd subharmonic[6] 11
1151.23
C7 35 : 18 5·7 : 2·32 play Septimal supermajor seventh, septimal quarter tone inverted 7
1158.94
B[2] 125 : 64 53 : 26 play Just augmented seventh,[5] 125th harmonic 5
1172.74
C7+ 63 : 32 32·7 : 25 play Sixty-third harmonic[5] 7
1178.49
C'- 160 : 81 25·5 : 34 play Octave − syntonic comma,[3] semi-diminished octave[citation needed] 5
1179.59
B23 253 : 128 11·23 : 27 play Two-hundred-fifty-third harmonic[5] 23
1186.42
127 : 64 127 : 26 play Hundred-twenty-seventh harmonic[5] 127
1200.00
C' 2 : 1 2 : 1 play Octave[3][10] or diapason[4] 1, 12 3 M S
1223.46
B+++ 531441 : 262144 312 : 218 play Pythagorean augmented seventh[3][6] 3
1525.86
21/2+1 play Silver ratio
1901.96
G' 3 : 1 3 : 1 play Tritave or just perfect twelfth 3
2400.00
C" 4 : 1 22 : 1 play Fifteenth or two octaves 1, 12 3 M
3986.31
E''' 10 : 1 5·2 : 1 play Decade, compound just major third 5 M

See also

Notes

  1. ^ a b c d Maneri-Sims notation

References

  1. ^ a b Fox, Christopher (2003). "Microtones and Microtonalities", Contemporary Music Review, v. 22, pt. 1-2. (Abingdon, Oxfordshire, UK: Routledge): p.13.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi Fonville, John. 1991. "Ben Johnston's Extended Just Intonation: A Guide for Interpreters". Perspectives of New Music 29, no. 2 (Summer): 106–37.
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de "List of intervals", Huygens-Fokker Foundation. The Foundation uses "classic" to indicate "just" or leaves off any adjective, as in "major sixth".
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x Partch, Harry (1979). Genesis of a Music, p.68-69. ISBN 978-0-306-80106-8.
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz "Anatomy of an Octave", KyleGann.com. Gann leaves off "just" but includes "5-limit". He uses "median" for "neutral".
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay Haluška, Ján (2003). The Mathematical Theory of Tone Systems, p.xxv-xxix. ISBN 978-0-8247-4714-5.
  7. ^ Ellis, Alexander J.; Hipkins, Alfred J. (1884), "Tonometrical Observations on Some Existing Non-Harmonic Musical Scales", Proceedings of the Royal Society of London, 37 (232–234): 368–385, doi:10.1098/rspl.1884.0041, JSTOR 114325.
  8. ^ "Orwell Temperaments", Xenharmony.org.
  9. ^ a b Partch (1979), p.70.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Alexander John Ellis (1885). On the musical scales of various nations, p.488. s.n.
  11. ^ William Smythe Babcock Mathews (1895). Pronouncing dictionary and condensed encyclopedia of musical terms, p.13. ISBN 1-112-44188-3.
  12. ^ a b c d e f Anger, Joseph Humfrey (1912). A treatise on harmony, with exercises, Volume 3, p.xiv-xv. W. Tyrrell.
  13. ^ a b c d e f g h i j k l m n Hermann Ludwig F. von Helmholtz (Alexander John Ellis, trans.) (1875). "Additions by the translator", On the sensations of tone as a physiological basis for the theory of music, p.644. No ISBN specified.
  14. ^ A. R. Meuss (2004). Intervals, Scales, Tones and the Concert Pitch C. Temple Lodge Publishing. p. 15. ISBN 1902636465.
  15. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Paul, Oscar (1885). A manual of harmony for use in music-schools and seminaries and for self-instruction, p.165. Theodore Baker, trans. G. Schirmer. Paul uses "natural" for "just".
  16. ^ a b "13th-harmonic", 31et.com.
  17. ^ Brabner, John H. F. (1884). The National Encyclopaedia, Vol.13, p.182. London. [ISBN unspecified]
  18. ^ Sabat, Marc and von Schweinitz, Wolfgang (2004). "The Extended Helmholtz-Ellis JI Pitch Notation" [PDF], NewMusicBox.org. Accessed: 04:12, 15 March 2014 (UTC).
  19. ^ Hermann L. F Von Helmholtz (2007). On the Sensations of Tone, p.456. ISBN 978-1-60206-639-7.