List of sequenced animal genomes

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

This list of sequenced animal genomes contains animal species for which complete genome sequences have been assembled, annotated and published. Substantially complete draft genomes are included, but not partial genome sequences or organelle-only sequences.

Porifera[edit]

Ctenophora[edit]

Placozoa[edit]

Cnidaria[edit]

Deuterostomia[edit]

Hemichordates[edit]

Echinoderms[edit]

Tunicates[edit]

Cephalochordates[edit]

Cyclostomes[edit]

Cartilaginous fish[edit]

Lungfish[edit]

Bony fish[edit]

Amphibians[edit]

Reptiles[edit]

Birds[edit]

Mammals[edit]

Protostomia[edit]

Insects[edit]

Crustaceans[edit]

Chelicerates[edit]

Of which Arachnids:

Myriapoda[edit]

Tardigrades[edit]

Molluscs[edit]

Platyhelminthes[edit]

Nematodes[edit]

Annelids[edit]

Bryozoa[edit]

Brachiopoda[edit]

Rotifera[edit]

See also[edit]

References[edit]

  1. ^ Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. (August 2010). "The Amphimedon queenslandica genome and the evolution of animal complexity". Nature. 466 (7307): 720–6. Bibcode:2010Natur.466..720S. doi:10.1038/nature09201. PMC 3130542. PMID 20686567.
  2. ^ a b Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. (February 2016). "Hologenome analysis of two marine sponges with different microbiomes". BMC Genomics. 17 (1): 158. doi:10.1186/s12864-016-2501-0. PMC 4772301. PMID 26926518.
  3. ^ Kenny N, Francis, W, et al. (July 2020). "Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri". Nature Communications. 11 (1): 720–6. Bibcode:2020NatCo..11.3676K. doi:10.1038/s41467-020-17397-w. PMC 7385117. PMID 32719321.
  4. ^ National Human Genome Research Institute (2012). "NHGRI Mnemiopsis Genome Project". Retrieved 2013-02-05.
  5. ^ Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, et al. (December 2013). "The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution". Science. 342 (6164): 1242592. doi:10.1126/science.1242592. PMC 3920664. PMID 24337300.
  6. ^ Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. (June 2014). "The ctenophore genome and the evolutionary origins of neural systems". Nature. 510 (7503): 109–14. Bibcode:2014Natur.510..109M. doi:10.1038/nature13400. PMC 4337882. PMID 24847885.
  7. ^ Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, et al. (August 2008). "The Trichoplax genome and the nature of placozoans". Nature. 454 (7207): 955–60. Bibcode:2008Natur.454..955S. doi:10.1038/nature07191. PMID 18719581. S2CID 4415492.
  8. ^ Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, et al. (July 2018). "Comparative genomics and the nature of placozoan species". PLOS Biology. 16 (7): e2005359. doi:10.1371/journal.pbio.2005359. PMC 6067683. PMID 30063702.
  9. ^ Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, et al. (March 2010). "The dynamic genome of Hydra". Nature. 464 (7288): 592–6. Bibcode:2010Natur.464..592C. doi:10.1038/nature08830. PMC 4479502. PMID 20228792.
  10. ^ Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. (July 2007). "Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization". Science. 317 (5834): 86–94. Bibcode:2007Sci...317...86P. doi:10.1126/science.1139158. PMID 17615350. S2CID 9868191.
  11. ^ Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. (September 2015). "The genome of Aiptasia, a sea anemone model for coral symbiosis". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): 11893–8. Bibcode:2015PNAS..11211893B. doi:10.1073/pnas.1513318112. PMC 4586855. PMID 26324906.
  12. ^ Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. (July 2011). "Using the Acropora digitifera genome to understand coral responses to environmental change". Nature. 476 (7360): 320–3. Bibcode:2011Natur.476..320S. doi:10.1038/nature10249. PMID 21785439. S2CID 4364757.
  13. ^ Jiang J (2017). "Renilla muelleri genome". reefgenomics.
  14. ^ Jiang JB, Quattrini AM, Francis WR, Ryan JF, Rodríguez E, McFadden CS (April 2019). "A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome". GigaScience. 8 (4). doi:10.1093/gigascience/giz026. PMC 6446218. PMID 30942866.
  15. ^ Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, et al. (December 2017). "Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals". Scientific Reports. 7 (1): 17583. Bibcode:2017NatSR...717583V. doi:10.1038/s41598-017-17484-x. PMC 5730576. PMID 29242500.
  16. ^ Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, et al. (January 2019). "The genome of the jellyfish Aurelia and the evolution of animal complexity" (PDF). Nature Ecology & Evolution. 3 (1): 96–104. doi:10.1038/s41559-018-0719-8. PMID 30510179. S2CID 54437176.
  17. ^ Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, et al. (May 2019). "The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle". Nature Ecology & Evolution. 3 (5): 801–810. doi:10.1038/s41559-019-0833-2. PMID 30858591. S2CID 73728941.
  18. ^ Cunning R, Bay RA, Gillette P, Baker AC, Traylor-Knowles, N (2018). "Comparative analysis of the Pocillopora damicornis genome highlights role of immune system in coral evolution". Scientific Reports. 8 (1): 16134. Bibcode:2018NatSR...816134C. doi:10.1038/s41598-018-34459-8. PMC 6208414. PMID 30382153.
  19. ^ Prada C, Hanna B, Budd AF, Woodley CM, Schmutz J, Grimwood J, et al. (2016). "2016 Empty Niches after Extinctions Increase Population Sizes of Modern Corals". Current Biology. 1 (26): 3190–3194. doi:10.1016/j.cub.2016.09.039. PMID 27866895. S2CID 188206.
  20. ^ Kim HM, Weber JA, Lee N, Park SG, Cho YS, Bhak Y, et al. (March 2019). "The genome of the giant Nomura's jellyfish sheds light on the early evolution of active predation". BMC Biology. 17 (1): 28. doi:10.1186/s12915-019-0643-7. PMC 6441219. PMID 30925871.
  21. ^ Li Y, Gao L, Pan Y, Tian M, Li Y, He C, et al. (April 2020). "Chromosome-level reference genome of the jellyfish Rhopilema esculentum". GigaScience. 9 (4). doi:10.1093/gigascience/giaa036. PMC 7172023. PMID 32315029.
  22. ^ a b c Ohdera A, Ames CL, Dikow RB, Kayal E, Chiodin M, Busby B, et al. (July 2019). "Box, stalked, and upside-down? Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages: Alatina alata (Cubozoa), Calvadosia cruxmelitensis (Staurozoa), and Cassiopea xamachana (Scyphozoa)". GigaScience. 8 (7). doi:10.1093/gigascience/giz069. PMC 6599738. PMID 31257419.
  23. ^ Jeon Y, Park SG, Lee N, Weber JA, Kim HS, Hwang SJ, et al. (March 2019). "The Draft Genome of an Octocoral, Dendronephthya gigantea". Genome Biology and Evolution. 11 (3): 949–953. doi:10.1093/gbe/evz043. PMC 6447388. PMID 30825304.
  24. ^ Cooke I, Ying H, Forêt S, Bongaerts P, Strugnell JM, Simakov O, et al. (November 2020). "Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts". Science Advances. 6 (48): eabc6318. Bibcode:2020SciA....6.6318C. doi:10.1126/sciadv.abc6318. PMC 7695477. PMID 33246955. S2CID 227179581.
  25. ^ a b Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, et al. (November 2015). "Hemichordate genomes and deuterostome origins". Nature. 527 (7579): 459–65. Bibcode:2015Natur.527..459S. doi:10.1038/nature16150. PMC 4729200. PMID 26580012.
  26. ^ Baughman KW, McDougall C, Cummins SF, Hall M, Degnan BM, Satoh N, Shoguchi E (December 2014). "Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci". Genesis. 52 (12): 952–8. doi:10.1002/dvg.22840. PMID 25394327. S2CID 32809575.
  27. ^ Jo J, Oh J, Lee HG, Hong HH, Lee SG, Cheon S, et al. (January 2017). "Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants". GigaScience. 6 (1): 1–6. doi:10.1093/gigascience/giw006. PMC 5437941. PMID 28369350.
  28. ^ Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, et al. (November 2006). "The genome of the sea urchin Strongylocentrotus purpuratus". Science. 314 (5801): 941–52. Bibcode:2006Sci...314..941S. doi:10.1126/science.1133609. PMC 3159423. PMID 17095691.
  29. ^ Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, et al. (December 2002). "The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins". Science. 298 (5601): 2157–67. Bibcode:2002Sci...298.2157D. doi:10.1126/science.1080049. PMID 12481130. S2CID 15987281.
  30. ^ Small KS, Brudno M, Hill MM, Sidow A (2007). "A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome". Genome Biology. 8 (3): R41. doi:10.1186/gb-2007-8-3-r41. PMC 1868934. PMID 17374142.
  31. ^ Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, et al. (December 2001). "Miniature genome in the marine chordate Oikopleura dioica". Science. 294 (5551): 2506. doi:10.1126/science.294.5551.2506. PMID 11752568.
  32. ^ Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. (June 2008). "The amphioxus genome and the evolution of the chordate karyotype". Nature. 453 (7198): 1064–71. Bibcode:2008Natur.453.1064P. doi:10.1038/nature06967. PMID 18563158. S2CID 4418548.
  33. ^ Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W (July 2009). "The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage". BMC Evolutionary Biology. 9: 180. doi:10.1186/1471-2148-9-180. PMC 2728731. PMID 19646260.
  34. ^ Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, et al. (April 2013). "Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution". Nature Genetics. 45 (4): 415–21, 421e1-2. doi:10.1038/ng.2568. PMC 3709584. PMID 23435085.
  35. ^ Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, et al. (April 2007). "Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome". PLOS Biology. 5 (4): e101. doi:10.1371/journal.pbio.0050101. PMC 1845163. PMID 17407382.
  36. ^ Read TD, Petit RA, Joseph SJ, Alam MT, Weil MR, Ahmad M, et al. (July 2017). "Draft sequencing and assembly of the genome of the world's largest fish, the whale shark: Rhincodon typus Smith 1828". BMC Genomics. 18 (1): 532. doi:10.1186/s12864-017-3926-9. PMC 5513125. PMID 28709399.
  37. ^ Marra NJ, Stanhope MJ, Jue NK, Wang M, Sun Q, Pavinski Bitar P, et al. (February 2019). "White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability". Proceedings of the National Academy of Sciences of the United States of America. 116 (10): 4446–4455. doi:10.1073/pnas.1819778116. PMC 6410855. PMID 30782839.
  38. ^ Zhang Y, Gao H, Li H, Guo J, Ouyang B, Wang M, et al. (November 2020). "The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish". iScience. 23 (11): 101754. Bibcode:2020iSci...23j1754Z. doi:10.1016/j.isci.2020.101754. PMC 7677710. PMID 33251490.
  39. ^ a b Hara Y, Yamaguchi K, Onimaru K, Kadota M, Koyanagi M, Keeley SD, et al. (November 2018). "Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates". Nature Ecology & Evolution. 2 (11): 1761–1771. doi:10.1038/s41559-018-0673-5. PMID 30297745. S2CID 52944566.
  40. ^ Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, et al. (February 2021). "African lungfish genome sheds light on the vertebrate water-to-land transition". Cell. 184 (5): 1362–1376.e18. doi:10.1016/j.cell.2021.01.047. PMID 33545087. S2CID 231809825.
  41. ^ Fan G, Chan J, Ma K, Yang B, Zhang H, Yang X, et al. (November 2018). "Chromosome-level reference genome of the Siamese fighting fish Betta splendens, a model species for the study of aggression". GigaScience. 7 (11). doi:10.1093/gigascience/giy087. PMC 6251983. PMID 30010754.
  42. ^ a b c d e f g h i j Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (August 2020). "Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K)". GigaScience. 9 (8). doi:10.1093/gigascience/giaa080. PMC 7433795. PMID 32810278.
  43. ^ Guangyi S, Yue S, Liandong Y, Xiaoyun H, Suyu Z, Mengqi Z, Xianwei Y, Yue C, He Z (2020). "Genomic data of the kissing gourami, Helostoma temminkii". GigaScience Database. doi:10.5524/102190. Retrieved 2020-08-19.
  44. ^ Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, et al. (June 2007). "The medaka draft genome and insights into vertebrate genome evolution". Nature. 447 (7145): 714–9. Bibcode:2007Natur.447..714K. doi:10.1038/nature05846. PMID 17554307. S2CID 4419559.
  45. ^ Winter S, Prost S, De Raad J, Coimbra R, Wolf M, Nebenfuehr M, et al. (2020). "Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra". Gigabyte. 2020: 1–10. doi:10.46471/gigabyte.6.
  46. ^ Xiao Y, Xiao Z, Ma D, Liu J, Li J (March 2019). "Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae". GigaScience. 8 (3). doi:10.1093/gigascience/giz013. PMC 6423371. PMID 30715332.
  47. ^ McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, et al. (October 2014). "The cavefish genome reveals candidate genes for eye loss". Nature Communications. 5 (1): 5307. Bibcode:2014NatCo...5.5307M. doi:10.1038/ncomms6307. PMC 4218959. PMID 25329095.
  48. ^ a b Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, et al. (April 2019). "Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes". GigaScience. 8 (4). doi:10.1093/gigascience/giz030. PMC 6447674. PMID 30942871.
  49. ^ Í Kongsstovu S, Dahl HA, Gislason H, Í Homrum E, Jacobsen JA, Flicek P, Mikalsen SO (April 2020). "Identification of male heterogametic sex determining regions on the Atlantic herring Clupea harengus genome". Journal of Fish Biology. 97 (1): 190–201. doi:10.1111/jfb.14349. PMC 7115899. PMID 32293027. S2CID 215774454.
  50. ^ Xu G, Bian C, Nie Z, Li J, Wang Y, Xu D, et al. (January 2020). "Genome and population sequencing of a chromosome-level genome assembly of the Chinese tapertail anchovy (Coilia nasus) provides novel insights into migratory adaptation". GigaScience. 9 (1). doi:10.1093/gigascience/giz157. PMC 6939831. PMID 31895412.
  51. ^ Louro B, De Moro G, Garcia C, Cox CJ, Veríssimo A, Sabatino SJ, et al. (May 2019). "A haplotype-resolved draft genome of the European sardine (Sardina pilchardus)". GigaScience. 8 (5). doi:10.1093/gigascience/giz059. PMC 6528745. PMID 31112613.
  52. ^ Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H, Maccallum I, et al. (April 2013). "The African coelacanth genome provides insights into tetrapod evolution". Nature. 496 (7445): 311–6. Bibcode:2013Natur.496..311A. doi:10.1038/nature12027. PMC 3633110. PMID 23598338.
  53. ^ Ensembl entry
  54. ^ Jiang W, Qiu Y, Pan X, Zhang Y, Wang X, Lv Y, et al. (2018). "Anabarilius grahami (Regan), and Its Evolutionary and Genetic Applications". Frontiers in Genetics. 9: 614. doi:10.3389/fgene.2018.00614. PMC 6288284. PMID 30564274.
  55. ^ "Ensembl genome browser 59: Danio rerio - Description - Search Ensembl Zebrafish". Ensembl.org. Retrieved 2010-08-27.
  56. ^ Liu HP, Xiao SJ, Wu N, Wang D, Liu YC, Zhou CW, et al. (February 2019). "The sequence and de novo assembly of Oxygymnocypris stewartii genome". Scientific Data. 6: 190009. Bibcode:2019NatSD...690009L. doi:10.1038/sdata.2019.9. PMC 6362891. PMID 30720802.
  57. ^ Liu H, Chen C, Gao Z, Min J, Gu Y, Jian J, et al. (July 2017). "The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet". GigaScience. 6 (7): 1–13. doi:10.1093/gigascience/gix039. PMC 5570040. PMID 28535200.
  58. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the rosy bitterling, Rhodeus ocellatus". GigaScience Database. doi:10.5524/102192.
  59. ^ Yuan D, Chen X, Gu H, Zou M, Zou Y, Fang J, et al. (November 2020). "Chromosomal genome of Triplophysa bleekeri provides insights into its evolution and environmental adaptation". GigaScience. 9 (11). doi:10.1093/gigascience/giaa132. PMC 7684707. PMID 33231676.
  60. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of Pseudobrama simoni". GigaScience Database. doi:10.5524/102191.
  61. ^ a b c d Johnson LK, Sahasrabudhe R, Gill JA, Roach JL, Froenicke L, Brown CT, Whitehead A (June 2020). "Draft genome assemblies using sequencing reads from Oxford Nanopore Technology and Illumina platforms for four species of North American Fundulus killifish". GigaScience. 9 (6). doi:10.1093/gigascience/giaa067. PMC 7301629. PMID 32556169.
  62. ^ Shao F, Ludwig A, Mao Y, Liu N, Peng Z (August 2020). "Chromosome-level genome assembly of the female western mosquitofish (Gambusia affinis)". GigaScience. 9 (8). doi:10.1093/gigascience/giaa092. PMC 7450667. PMID 32852039.
  63. ^ van Kruistum H, van den Heuvel J, Travis J, Kraaijeveld K, Zwaan BJ, Groenen MA, et al. (July 2019). "The genome of the live-bearing fish Heterandria formosa implicates a role of conserved vertebrate genes in the evolution of placental fish". BMC Evolutionary Biology. 19 (1): 156. doi:10.1186/s12862-019-1484-2. PMC 6660938. PMID 31349784.
  64. ^ Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, et al. (May 2013). "The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits". Nature Genetics. 45 (5): 567–72. doi:10.1038/ng.2604. PMC 3677569. PMID 23542700.
  65. ^ Harel I, Benayoun BA, Machado B, Singh PP, Hu CK, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A (February 2015). "A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate". Cell. 160 (5): 1013–1026. doi:10.1016/j.cell.2015.01.038. PMC 4344913. PMID 25684364.
  66. ^ Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, et al. (December 2015). "Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish". Cell. 163 (6): 1527–38. doi:10.1016/j.cell.2015.10.071. PMID 26638077. S2CID 16423362.
  67. ^ Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu CK, Clément-Ziza M, Willemsen D, Cui R, Harel I, Machado BE, Yee MC, Sharp SC, Bustamante CD, Beyer A, Johnson EA, Brunet A (December 2015). "The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan". Cell. 163 (6): 1539–54. doi:10.1016/j.cell.2015.11.008. PMC 4684691. PMID 26638078.
  68. ^ Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, et al. (2014). "The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei". PLOS ONE. 9 (7): e102089. Bibcode:2014PLoSO...9j2089R. doi:10.1371/journal.pone.0102089. PMC 4113312. PMID 25069045.
  69. ^ Ensembl Pre entry[permanent dead link]
  70. ^ Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. (April 2012). "The genomic basis of adaptive evolution in threespine sticklebacks". Nature. 484 (7392): 55–61. Bibcode:2012Natur.484...55.. doi:10.1038/nature10944. PMC 3322419. PMID 22481358.
  71. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the marble goby, Oxyeleotris marmorata". GigaScience Database. doi:10.5524/102185. Retrieved 2020-08-19.
  72. ^ Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH, Novina CD, et al. (June 2014). "Nonhuman genetics. Genomic basis for the convergent evolution of electric organs". Science. 344 (6191): 1522–5. doi:10.1126/science.1254432. PMC 5541775. PMID 24970089.
  73. ^ "Spotted gar". Ensembl. Retrieved 11 September 2014.
  74. ^ Liu K, Xu D, Li J, Bian C, Duan J, Zhou Y, et al. (April 2017). "Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius". GigaScience. 6 (4): 1–6. doi:10.1093/gigascience/giw012. PMC 5530312. PMID 28327943.
  75. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genome data of the African bonytongue, Heterotis niloticus". GigaScience Database. doi:10.5524/102184. Retrieved 2020-08-19.
  76. ^ Bian C, Hu Y, Ravi V, Kuznetsova IS, Shen X, Mu X, et al. (April 2016). "The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts". Scientific Reports. 6 (1): 24501. Bibcode:2016NatSR...624501B. doi:10.1038/srep24501. PMC 4835728. PMID 27089831.
  77. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the melon butterflyfish, Chaetodon trifasciatus". GigaScience Database. doi:10.5524/102187.
  78. ^ Xu J, Bian C, Chen K, Liu G, Jiang Y, Luo Q, et al. (April 2017). "Draft genome of the Northern snakehead, Channa argus". GigaScience. 6 (4): 1–5. doi:10.1093/gigascience/gix011. PMC 5530311. PMID 28327946.
  79. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the copperband butterflyfish, Chelmon rostratus". GigaScience Database. doi:10.5524/102189. Retrieved 2020-08-19.
  80. ^ a b Chen L, Lu Y, Li W, Ren Y, Yu M, Jiang S, et al. (April 2019). "The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes". GigaScience. 8 (4). doi:10.1093/gigascience/giz016. PMC 6457430. PMID 30715292.
  81. ^ Wu C, Zhang D, Kan M, Lv Z, Zhu A, Su Y, et al. (November 2014). "The draft genome of the large yellow croaker reveals well-developed innate immunity". Nature Communications. 5: 5227. Bibcode:2014NatCo...5.5227W. doi:10.1038/ncomms6227. PMC 4263168. PMID 25407894.
  82. ^ Norrell AE, Jones KL, Saillant EA (2020-04-29). "Development and characterization of genomic resources for a non-model marine teleost, the red snapper (Lutjanus campechanus, Lutjanidae): Construction of a high-density linkage map, anchoring of genome contigs and comparative genomic analysis". PLOS ONE. 15 (4): e0232402. Bibcode:2020PLoSO..1532402N. doi:10.1371/journal.pone.0232402. PMC 7190162. PMID 32348345.
  83. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the bignose unicornfish, Naso vlamingii". GigaScience Database. doi:10.5524/102188.
  84. ^ Ahn DH, Shin SC, Kim BM, Kang S, Kim JH, Ahn I, Park J, Park H (August 2017). "Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti". GigaScience. 6 (8): 1–6. doi:10.1093/gigascience/gix060. PMC 5597851. PMID 28873966.
  85. ^ Sarropoulou E, Sundaram AY, Kaitetzidou E, Kotoulas G, Gilfillan GD, Papandroulakis N, et al. (December 2017). "Full genome survey and dynamics of gene expression in the greater amberjack Seriola dumerili". GigaScience. 6 (12): 1–13. doi:10.1093/gigascience/gix108. PMC 5751066. PMID 29126158.
  86. ^ Xu S, Xiao S, Zhu S, Zeng X, Luo J, Liu J, et al. (September 2018). "A draft genome assembly of the Chinese sillago (Sillago sinica), the first reference genome for Sillaginidae fishes". GigaScience. 7 (9). doi:10.1093/gigascience/giy108. PMC 6143730. PMID 30202912.
  87. ^ Lu L, Zhao J, Li C (March 2020). "High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii)". G3. 10 (3): 877–880. doi:10.1534/g3.119.400930. PMC 7056987. PMID 31953307.
  88. ^ Pauletto M, Manousaki T, Ferraresso S, Babbucci M, Tsakogiannis A, Louro B, et al. (2018-08-17). "Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish". Communications Biology. 1 (1): 119. doi:10.1038/s42003-018-0122-7. PMC 6123679. PMID 30271999.
  89. ^ Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. (May 2016). "The Atlantic salmon genome provides insights into rediploidization". Nature. 533 (7602): 200–5. Bibcode:2016Natur.533..200L. doi:10.1038/nature17164. PMC 8127823. PMID 27088604. S2CID 4398298.
  90. ^ Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. (April 2014). "The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates". Nature Communications. 5: 3657. Bibcode:2014NatCo...5.3657B. doi:10.1038/ncomms4657. PMC 4071752. PMID 24755649.
  91. ^ Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR, Withler RE, et al. (2018-04-05). "Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome". PLOS ONE. 13 (4): e0195461. Bibcode:2018PLoSO..1395461C. doi:10.1371/journal.pone.0195461. PMC 5886536. PMID 29621340.
  92. ^ Narum SR, Di Genova A, Micheletti SJ, Maass A (July 2018). "Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon". Proceedings. Biological Sciences. 285 (1883): 20180935. doi:10.1098/rspb.2018.0935. PMC 6083255. PMID 30051839.
  93. ^ He Y, Chang Y, Bao L, Yu M, Li R, Niu J, et al. (May 2019). "A chromosome-level genome of black rockfish, Sebastes schlegelii, provides insights into the evolution of live birth" (PDF). Molecular Ecology Resources. 19 (5): 1309–1321. doi:10.1111/1755-0998.13034. PMID 31077549. S2CID 149454779.
  94. ^ Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, et al. (June 2016). "The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts". Nature Communications. 7: 11757. Bibcode:2016NatCo...711757L. doi:10.1038/ncomms11757. PMC 4895719. PMID 27249958.
  95. ^ Ozerov MY, Flajšhans M, Noreikiene K, Vasemägi A, Gross R (November 2020). "Draft Genome Assembly of the Freshwater Apex Predator Wels Catfish (Silurus glanis) Using Linked-Read Sequencing". G3. 10 (11): 3897–3906. doi:10.1534/g3.120.401711. PMC 7642921. PMID 32917720. S2CID 221636677.
  96. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the Siamese tigerfish, Datnioides pulcher". GigaScience Database. doi:10.5524/102186.
  97. ^ Sun S, Wang Y, Zeng W, Du X, Li L, Hong X, et al. (May 2020). "The genome of Mekong tiger perch (Datnioides undecimradiatus) provides insights into the phylogenetic position of Lobotiformes and biological conservation". Scientific Reports. 10 (1): 8164. Bibcode:2020NatSR..10.8164S. doi:10.1038/s41598-020-64398-2. PMC 7235238. PMID 32424221. S2CID 218670972.
  98. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genome data of the long-spine porcupinefish, Diodon holocanthus". GigaScience Database. doi:10.5524/102183.
  99. ^ Pan H, Yu H, Ravi V, Li C, Lee AP, Lian MM, et al. (September 2016). "The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate". GigaScience. 5 (1): 36. doi:10.1186/s13742-016-0144-3. PMC 5016917. PMID 27609345.
  100. ^ "Fourth Genome Assembly". Fugu Genome Project. International Fugu Genome Consortium. Archived from the original on 2010-01-31.
  101. ^ Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, et al. (August 2002). "Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes". Science. 297 (5585): 1301–10. Bibcode:2002Sci...297.1301A. doi:10.1126/science.1072104. PMID 12142439. S2CID 10310355.
  102. ^ Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. (October 2004). "Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype". Nature. 431 (7011): 946–57. Bibcode:2004Natur.431..946J. doi:10.1038/nature03025. PMID 15496914. S2CID 4414316.
  103. ^ Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AW, Pippel M, et al. (February 2018). "The axolotl genome and the evolution of key tissue formation regulators". Nature. 554 (7690): 50–55. Bibcode:2018Natur.554...50N. doi:10.1038/nature25458. PMID 29364872.
  104. ^ Li J, Yu H, Wang W, Fu C, Zhang W, Han F, Wu H (December 2019). "Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense". Nature Communications. 10 (1): 5551. Bibcode:2019NatCo..10.5551L. doi:10.1038/s41467-019-13531-5. PMC 6895153. PMID 31804492.
  105. ^ Li Q, Guo Q, Zhou Y, Tan H, Bertozzi T, Zhu Y, et al. (2020). "A draft genome assembly of the eastern banjo frog Limnodynastes dumerilii dumerilii (Anura: Limnodynastidae)". Gigabyte. 2020: 1–13. doi:10.46471/gigabyte.2.
  106. ^ Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, et al. (March 2015). "Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes". Proceedings of the National Academy of Sciences of the United States of America. 112 (11): E1257-62. Bibcode:2015PNAS..112E1257S. doi:10.1073/pnas.1501764112. PMC 4371989. PMID 25733869.
  107. ^ Rogers RL, Zhou L, Chu C, Márquez R, Corl A, Linderoth T, et al. (December 2018). "Genomic Takeover by Transposable Elements in the Strawberry Poison Frog". Molecular Biology and Evolution. 35 (12): 2913–2927. doi:10.1093/molbev/msy185. PMC 6278860. PMID 30517748.
  108. ^ Lamichhaney S, Catullo R, Keogh JS, Clulow S, Edwards SV, Ezaz T (March 2021). "A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, Platyplectrum ornatum". PNAS:Proceedings of the National Academy of Sciences of the United States of America. 118 (11): e2011649118. doi:10.1073/pnas.2011649118. PMC 7980411. PMID 33836564.
  109. ^ Denton RD, Kudra RS, Malcom JW, Du Preez L, Malone JH (2018-11-20). "The African Bullfrog (Pyxicephalus adspersus) genome unites the two ancestral ingredients for making vertebrate sex chromosomes". bioRxiv: 329847. doi:10.1101/329847. S2CID 90800869.
  110. ^ Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, Pandoh P, Kirk H, Zhao Y, Jones M, Mungall AJ, Coope R, Pleasance S, Moore RA, Holt RA, Round JM, Ohora S, Walle BV, Veldhoen N, Helbing CC, Birol I (November 2017). "The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA". Nature Communications. 8 (1): 1433. Bibcode:2017NatCo...8.1433H. doi:10.1038/s41467-017-01316-7. PMC 5681567. PMID 29127278.
  111. ^ Edwards RJ, Tuipulotu DE, Amos TG, O'Meally D, Richardson MF, Russell TL, et al. (August 2018). "Draft genome assembly of the invasive cane toad, Rhinella marina". GigaScience. 7 (9). doi:10.1093/gigascience/giy095. PMC 6145236. PMID 30101298.
  112. ^ Li Y, Ren Y, Zhang D, Jiang H, Wang Z, Li X, Rao D (September 2019). "Chromosome-level assembly of the mustache toad genome using third-generation DNA sequencing and Hi-C analysis". GigaScience. 8 (9). doi:10.1093/gigascience/giz114. PMC 6755253. PMID 31544214.
  113. ^ Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. (April 2010). "The genome of the Western clawed frog Xenopus tropicalis". Science. 328 (5978): 633–6. Bibcode:2010Sci...328..633H. doi:10.1126/science.1183670. PMC 2994648. PMID 20431018.
  114. ^ a b c St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, et al. (January 2012). "Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes". Genome Biology. 13 (1): 415. doi:10.1186/gb-2012-13-1-415. PMC 3334581. PMID 22293439.
  115. ^ Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, et al. (September 2013). "Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator". Cell Research. 23 (9): 1091–105. doi:10.1038/cr.2013.104. PMC 3760627. PMID 23917531.
  116. ^ Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, et al. (March 28, 2014). "Genomic data of the Chinese alligator (Alligator sinensis)". GigaScience Database. doi:10.5524/100077.
  117. ^ Gemmell NJ, Rutherford K, Prost S, Tollis M, Winter D, Macey JR, et al. (August 2020). "The tuatara genome reveals ancient features of amniote evolution". Nature. 584 (7821): 403–409. doi:10.1038/s41586-020-2561-9. PMC 7116210. PMID 32760000.
  118. ^ Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, et al. (August 2011). "The genome of the green anole lizard and a comparative analysis with birds and mammals". Nature. 477 (7366): 587–91. Bibcode:2011Natur.477..587A. doi:10.1038/nature10390. PMC 3184186. PMID 21881562.
  119. ^ Almeida DD, Viala VL, Nachtigall PG, Broe M, Gibbs HL, de Toledo Serrano SM, Moura-da-Silva AM, Ho PL, Nishiyama MY Jr, Junqueira-de-Azevedo IL (2021). "Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the Bothrops jararaca genome". PNAS:Proceedings of the National Academy of Sciences of the United States of America. 118 (20): e2015159118. doi:10.1073/pnas.2015159118. PMC 8157943. PMID 33972420.
  120. ^ Song B, Cheng S, Sun Y, Zhong X, Jin J, Guan R, Murphy RW, Che J, Zhang Y, Liu X (2015). "A genome draft of the legless anguid lizard, Ophisaurus gracilis". GigaScience. 4: 17. doi:10.1186/s13742-015-0056-7. PMC 4391233. PMID 25859342.
  121. ^ a b c d Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M (2019). "Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes". Proceedings of the Royal Society B: Biological Sciences. 286 (1910): 20191828. doi:10.1098/rspb.2019.1828. PMC 6742997. PMID 31506057.
  122. ^ Xiong Z, Li F, Li Q, Zhou L, Gamble T, Zheng J, et al. (October 2016). "Draft genome of the leopard gecko, Eublepharis macularius". GigaScience. 5 (1): 47. doi:10.1186/s13742-016-0151-4. PMC 5080775. PMID 27784328.
  123. ^ Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, et al. (December 2013). "The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system". Proceedings of the National Academy of Sciences of the United States of America. 110 (51): 20651–6. Bibcode:2013PNAS..11020651V. doi:10.1073/pnas.1314702110. PMC 3870661. PMID 24297900.
  124. ^ Ullate-Agote A, Milinkovitch MC, Tzika AC (2015-07-02). "The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates". The International Journal of Developmental Biology. 58 (10–12): 881–8. doi:10.1387/ijdb.150060at. PMID 26154328.
  125. ^ Georges A, Li Q, Lian J, O'Meally D, Deakin J, Wang Z, et al. (2015-12-01). "High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps". GigaScience. 4 (1): 45. doi:10.1186/s13742-015-0085-2. PMC 4585809. PMID 26421146.
  126. ^ Castoe TA, de Koning AP, Hall KT, Card DC, Schield DR, Fujita MK, et al. (December 2013). "The Burmese python genome reveals the molecular basis for extreme adaptation in snakes". Proceedings of the National Academy of Sciences of the United States of America. 110 (51): 20645–50. Bibcode:2013PNAS..11020645C. doi:10.1073/pnas.1314475110. PMC 3870669. PMID 24297902.
  127. ^ Roscito JG, Sameith K, Pippel M, Francoijs KJ, Winkler S, Dahl A, et al. (December 2018). "The genome of the tegu lizard Salvator merianae: combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly". GigaScience. 7 (12). doi:10.1093/gigascience/giy141. PMC 6304105. PMID 30481296.
  128. ^ Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, et al. (July 2017). "Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus". GigaScience. 6 (7): 1–6. doi:10.1093/gigascience/gix041. PMC 5569961. PMID 28595343.
  129. ^ a b Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. (June 2013). "The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan". Nature Genetics. 45 (6): 701–706. doi:10.1038/ng.2615. PMC 4000948. PMID 23624526.
  130. ^ Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, et al. (March 2013). "The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage". Genome Biology. 14 (3): R28. doi:10.1186/gb-2013-14-3-r28. PMC 4054807. PMID 23537068.
  131. ^ Cao D, Wang M, Ge Y, Gong S (May 2019). "Draft genome of the big-headed turtle Platysternon megacephalum". Scientific Data. 6 (1): 60. Bibcode:2019NatSD...6...60C. doi:10.1038/s41597-019-0067-9. PMC 6522511. PMID 31097710.
  132. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. (December 2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–31. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. PMC 4405904. PMID 25504713.
  133. ^ "Golden Eagle Genome Sequenced".
  134. ^ Huang Y, Li Y, Burt DW, Chen H, Zhang Y, Qian W, et al. (July 2013). "The duck genome and transcriptome provide insight into an avian influenza virus reservoir species". Nature Genetics. 45 (7): 776–783. doi:10.1038/ng.2657. PMC 4003391. PMID 23749191.
  135. ^ Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L, Prohaska SJ, et al. (July 2015). "Kiwi genome provides insights into evolution of a nocturnal lifestyle". Genome Biology. 16 (1): 147. doi:10.1186/s13059-015-0711-4. PMC 4511969. PMID 26201466.
  136. ^ a b c d Galla SJ, Forsdick NJ, Brown L, Hoeppner MP, Knapp M, Maloney RF, et al. (December 2018). "Reference Genomes from Distantly Related Species Can Be Used for Discovery of Single Nucleotide Polymorphisms to Inform Conservation Management". Genes. 10 (1): 9. doi:10.3390/genes10010009. PMC 6356778. PMID 30583569.
  137. ^ Li S, Li B, Cheng C, Xiong Z, Liu Q, Lai J, et al. (2014-12-11). "Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species". Genome Biology. 15 (12): 557. doi:10.1186/s13059-014-0557-1. PMC 4290368. PMID 25496777.
  138. ^ a b Zhan X, Pan S, Wang J, Dixon A, He J, Muller MG, et al. (May 2013). "Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle". Nature Genetics. 45 (5): 563–6. doi:10.1038/ng.2588. PMID 23525076. S2CID 10858993.
  139. ^ Zhou C, Tu H, Yu H, Zheng S, Dai B, Price M, et al. (September 2019). "The Draft Genome of the Endangered Sichuan Partridge (Arborophila rufipectus) with Evolutionary Implications". Genes. 10 (9): 677. doi:10.3390/genes10090677. PMC 6770966. PMID 31491910.
  140. ^ International Chicken Genome Sequencing Consortium. (December 2004). "Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution". Nature. 432 (7018): 695–716. Bibcode:2004Natur.432..695C. doi:10.1038/nature03154. PMID 15592404. S2CID 4405203.
  141. ^ Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg L, et al. (September 2010). "Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis". PLOS Biology. 8 (9): e10000475. doi:10.1371/journal.pbio.1000475. PMC 2935454. PMID 20838655.
  142. ^ Vignal A, Boitard S, Thébault N, Dayo GK, Yapi-Gnaore V, Youssao Abdou Karim I, et al. (July 2019). "A guinea fowl genome assembly provides new evidence on evolution following domestication and selection in galliformes". Molecular Ecology Resources. 19 (4): 997–1014. doi:10.1111/1755-0998.13017. PMC 6579635. PMID 30945415.
  143. ^ Jaiswal SK, Gupta A, Saxena R (5 May 2018). "Genome Sequence of Indian Peacock Reveals the Peculiar Case of a Glittering Bird". bioRxiv. doi:10.1101/315457. S2CID 196632443.
  144. ^ Liu Y, Liu S, Zhang N, Que P, Liu N, Höglund J, et al. (December 2019). "Genome Assembly of the Common Pheasant Phasianus colchicus: A Model for Speciation and Ecological Genomics". Genome Biology and Evolution. 11 (12): 3326–3331. doi:10.1093/gbe/evz249. PMC 7145668. PMID 31713630.
  145. ^ Lee CY, Hsieh PH, Chiang LM, Chattopadhyay A, Li KY, Lee YF, et al. (May 2018). "Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant". GigaScience. 7 (5). doi:10.1093/gigascience/giy044. PMC 5941149. PMID 29722814.
  146. ^ Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J (March 2014). "Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution". BMC Genomics. 15: 180. doi:10.1186/1471-2164-15-180. PMC 4022176. PMID 24602261.
  147. ^ Sutton JT, Helmkampf M, Steiner CC, Bellinger MR, Korlach J, Hall R, et al. (August 2018). "A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species". Genes. 9 (8): 393. doi:10.3390/genes9080393. PMC 6115840. PMID 30071683.
  148. ^ Gan HM, Falk S, Morales HE, Austin CM, Sunnucks P, Pavlova A (September 2019). "Genomic evidence of neo-sex chromosomes in the eastern yellow robin". GigaScience. 8 (9). doi:10.1093/gigascience/giz111. PMC 6736294. PMID 31494668.
  149. ^ a b Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, et al. (November 2012). "The genomic landscape of species divergence in Ficedula flycatchers". Nature. 491 (7426): 756–60. Bibcode:2012Natur.491..756E. doi:10.1038/nature11584. PMID 23103876. S2CID 4414084.
  150. ^ Formenti G, Chiara M, Poveda L, Francoijs KJ, Bonisoli-Alquati A, Canova L, et al. (January 2019). "SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica)". GigaScience. 8 (1). doi:10.1093/gigascience/giy142. PMC 6324554. PMID 30496513.
  151. ^ Colquitt BM, Mets DG, Brainard MS (March 2018). "Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning". GigaScience. 7 (3): 1–6. doi:10.1093/gigascience/giy008. PMC 5861438. PMID 29618046.
  152. ^ Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (2019). "GigaDB Dataset - Genome data of the bird of paradise, Lycocorax pyrrhopterus". GigaScience Database. doi:10.5524/102158. Retrieved 2019-06-14.
  153. ^ a b c d Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (May 2019). "Comparative analyses identify genomic features potentially involved in the evolution of birds-of-paradise". GigaScience. 8 (5). doi:10.1093/gigascience/giz003. PMC 6497032. PMID 30689847.
  154. ^ de Villemereuil P, Rutschmann A, Lee KD, Ewen JG, Brekke P, Santure AW (March 2019). "Little Adaptive Potential in a Threatened Passerine Bird". Current Biology. 29 (5): 889–894.e3. doi:10.1016/j.cub.2019.01.072. PMID 30799244. S2CID 72334429.
  155. ^ Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (2019). "Genome data of the bird of paradise, Ptiloris paradiseus". GigaScience Database. doi:10.5524/102159.
  156. ^ Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, et al. (April 2010). "The genome of a songbird". Nature. 464 (7289): 757–62. Bibcode:2010Natur.464..757W. doi:10.1038/nature08819. PMC 3187626. PMID 20360741.
  157. ^ a b Kolchanova S, Kliver S, Komissarov A, Dobrinin P, Tamazian G, Grigorev K, et al. (January 2019). "Genomes of Three Closely Related Caribbean Amazons Provide Insight for Species History and Conservation". Genes. 10 (1): 54. doi:10.3390/genes10010054. PMC 6356210. PMID 30654561.
  158. ^ Oleksyk TK, Pombert JF, Siu D, Mazo-Vargas A, Ramos B, Guiblet W, et al. (September 2012). "A locally funded Puerto Rican parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education". GigaScience. 1 (1): 14. doi:10.1186/2047-217X-1-14. PMC 3626513. PMID 23587420.
  159. ^ Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, et al. (2013-05-08). "A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao)". PLOS ONE. 8 (5): e62415. Bibcode:2013PLoSO...862415S. doi:10.1371/journal.pone.0062415. PMC 3648530. PMID 23667475.
  160. ^ Galla SJ, Moraga R, Brown L, Cleland S, Hoeppner MP, Maloney RF, et al. (May 2020). "A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide". Evolutionary Applications. 13 (5): 991–1008. doi:10.1111/eva.12916. PMC 7232769. PMID 32431748.
  161. ^ a b c d e f g h i j k l m n o p q r s Pan H, Cole TL, Bi X, Fang M, Zhou C, Yang Z, et al. (September 2019). "High-coverage genomes to elucidate the evolution of penguins". GigaScience. 8 (9). doi:10.1093/gigascience/giz117. PMC 6904868. PMID 31531675.
  162. ^ Alan DT, Andrew RH, McKinlay B, Charles-André B, Chengran Z, Daniel KT, et al. (2019). "Genomic data from King penguin (Aptenodytes patagonicus)". GigaScience Database. doi:10.5524/102182.
  163. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Western rockhopper penguin (Eudyptes chrysocome)". GigaScience Database. doi:10.5524/102170.
  164. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Macaroni penguin (Eudyptes chrysolophus chrysolophus)". GigaScience Database. doi:10.5524/102165.
  165. ^ Alan DT, Andrew RH, McKinlay B, Charles-André B, Chengran Z, Daniel KT, et al. (2019). "Genomic data from Royal penguin (Eudyptes chrysolophus schlegeli)". GigaScience Database. doi:10.5524/102164.
  166. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Eastern rockhopper penguin (Eudyptes filholi)". GigaScience Database. doi:10.5524/102169.
  167. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Northern rockhopper penguin (Eudyptes moseleyi)". GigaScience Database. doi:10.5524/102171.
  168. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Fiordland-crested penguin (Eudyptes pachyrhynchus)". GigaScience Database. doi:10.5524/102166.
  169. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Snares-crested penguin (Eudyptes robustus)". GigaScience Database. doi:10.5524/102167.
  170. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Erect-crested penguin (Eudyptes sclateri)". GigaScience Database. doi:10.5524/102168.
  171. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from White-flippered penguin (Eudyptula minor albosignata)". GigaScience Database. doi:10.5524/102177.
  172. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Little blue penguin (Eudyptula minor minor)". GigaScience Database. doi:10.5524/102178.
  173. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Fairy penguin (Eudyptula novaehollandiae)". GigaScience Database. doi:10.5524/102179.
  174. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Yellow-eyed penguin (Megadyptes antipodes antipodes)". GigaScience Database. doi:10.5524/102172.
  175. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Chinstrap penguin (Pygoscelis antarctica)". GigaScience Database. doi:10.5524/102181.
  176. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Gentoo penguin (Pygoscelis papua)". GigaScience Database. doi:10.5524/102180.
  177. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Humboldt penguin (Spheniscus humboldti)". GigaScience Database. doi:10.5524/102176.
  178. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Magellanic penguin (Spheniscus magellanicus)". GigaScience Database. doi:10.5524/102173.
  179. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Galápagos penguin (Spheniscus mendiculus)". GigaScience Database. doi:10.5524/102175.
  180. ^ a b Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, et al. (October 2017). "Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes". Genome Biology and Evolution. 9 (10): 2522–2545. doi:10.1093/gbe/evx158. PMC 5629816. PMID 28992302.
  181. ^ a b c d Burga A, Wang W, Ben-David E, Wolf PC, Ramey AM, Verdugo C, Lyons K, Parker PG, Kruglyak L (June 2017). "A genetic signature of the evolution of loss of flight in the Galapagos cormorant". Science. 356 (6341): eaal3345. doi:10.1126/science.aal3345. PMC 5567675. PMID 28572335.
  182. ^ Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. (May 2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–83. Bibcode:2008Natur.453..175W. doi:10.1038/nature06936. PMC 2803040. PMID 18464734.
  183. ^ a b Y. Zhou et al. Platypus and echidna genomes reveal mammalian biology and evolution. Nature, published online January 6, 2021; doi: 10.1038/s41586-020-03039-0
  184. ^ Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, et al. (May 2007). "Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences". Nature. 447 (7141): 167–77. Bibcode:2007Natur.447..167M. doi:10.1038/nature05805. PMID 17495919. S2CID 4337232.
  185. ^ Brandies, Parice A.; Tang, Simon; Johnson, Robert S. P.; Hogg, Carolyn J.; Belov, Katherine (2020). "The first Antechinus reference genome provides a resource for investigating the genetic basis of semelparity and age-related neuropathologies". Gigabyte. 2020: 1–22. doi:10.46471/gigabyte.7. Retrieved 2020-11-17.
  186. ^ Ensembl entry
  187. ^ [https://ozmammalsgenomics.com/whole-genomes/dunnart-genome/ Fat-tailed dunnart genome]
  188. ^ [https://ozmammalsgenomics.com/whole-genomes/nquoll-genome/ Northern quoll genome]
  189. ^ [https://ozmammalsgenomics.com/whole-genomes/numbat-genome/ Numbat genome]
  190. ^ Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, et al. (January 2018). "Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore". Nature Ecology & Evolution. 2 (1): 182–192. doi:10.1038/s41559-017-0417-y. PMID 29230027. S2CID 4630578.
  191. ^ Eastern barred bandicoot genome
  192. ^ Greater bilby genome
  193. ^ Marsupial mole genome
  194. ^ Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, et al. (August 2011). "Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development". Genome Biology. 12 (8): R81. doi:10.1186/gb-2011-12-8-r81. PMC 3277949. PMID 21854559.
  195. ^ Brush-tailed rock-wallaby genome
  196. ^ Eastern bettong genome
  197. ^ Leadbeater's possum genome
  198. ^ Mountain pygmy-possum genome
  199. ^ Bare-nosed wombat genome
  200. ^ Davey, M. (10 April 2013). "Australians crack the code of koala's genetic blueprint". The Age. Retrieved 25 June 2013.
  201. ^ a b "Mammalian Genome Project". MIT. Archived from the original on 2009-01-06. Retrieved 2012-05-23.
  202. ^ Grigorev K, Kliver S, Dobrynin P, Komissarov A, Wolfsberger W, Krasheninnikova K, et al. (June 2018). "Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola". GigaScience. 7 (6). doi:10.1093/gigascience/giy025. PMC 6009670. PMID 29718205.
  203. ^ a b c d Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ (October 2013). "Genome-wide signatures of convergent evolution in echolocating mammals". Nature. 502 (7470): 228–31. Bibcode:2013Natur.502..228P. doi:10.1038/nature12511. PMC 3836225. PMID 24005325.
  204. ^ a b Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. (October 2011). "A high-resolution map of human evolutionary constraint using 29 mammals". Nature. 478 (7370): 476–82. Bibcode:2011Natur.478..476.. doi:10.1038/nature10530. PMC 3207357. PMID 21993624.
  205. ^ Ensembl entry
  206. ^ a b c d e Gutiérrez-Guerrero YT, Ibarra-Laclette E, Martínez Del Río C, Barrera-Redondo J, Rebollar EA, Ortega J, et al. (June 2020). "Genomic consequences of dietary diversification and parallel evolution due to nectarivory in leaf-nosed bats". GigaScience. 9 (6). doi:10.1093/gigascience/giaa059. PMC 7276932. PMID 32510151.
  207. ^ Ensembl entry
  208. ^ Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, et al. (April 2007). "Evolutionary and biomedical insights from the rhesus macaque genome". Science. 316 (5822): 222–34. Bibcode:2007Sci...316..222.. doi:10.1126/science.1139247. PMID 17431167. S2CID 10535839.
  209. ^ a b Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, et al. (October 2011). "Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques". Nature Biotechnology. 29 (11): 1019–23. doi:10.1038/nbt.1992. PMID 22002653. S2CID 9218360.
  210. ^ Batra SS, Levy-Sakin M, Robinson J, Guillory J, Durinck S, Vilgalys TP, et al. (December 2020). "Accurate assembly of the olive baboon (Papio anubis) genome using long-read and Hi-C data". GigaScience. 9 (12). doi:10.1093/gigascience/giaa134. PMC 7719865. PMID 33283855.
  211. ^ Wall JD, Schlebusch SA, Alberts SC, Cox LA, Snyder-Mackler N, Nevonen KA, et al. (July 2016). "Genomewide ancestry and divergence patterns from low-coverage sequencing data reveal a complex history of admixture in wild baboons". Molecular Ecology. 25 (14): 3469–83. doi:10.1111/mec.13684. PMC 5306399. PMID 27145036.
  212. ^ Wang L, Wu J, Liu X, Di D, Liang Y, Feng Y, et al. (August 2019). "A high-quality genome assembly for the endangered golden snub-nosed monkey (Rhinopithecus roxellana)". GigaScience. 8 (8). doi:10.1093/gigascience/giz098. PMC 6705546. PMID 31437279.
  213. ^ Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, et al. (January 2011). "Comparative and demographic analysis of orang-utan genomes". Nature. 469 (7331): 529–33. Bibcode:2011Natur.469..529L. doi:10.1038/nature09687. PMC 3060778. PMID 21270892.
  214. ^ Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, et al. (March 2012). "Insights into hominid evolution from the gorilla genome sequence". Nature. 483 (7388): 169–75. Bibcode:2012Natur.483..169S. doi:10.1038/nature10842. PMC 3303130. PMID 22398555.
  215. ^ McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, et al. (February 2001). "A physical map of the human genome". Nature. 409 (6822): 934–41. Bibcode:2001Natur.409..934M. doi:10.1038/35057157. PMID 11237014. S2CID 186244510.
  216. ^ Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. (February 2001). "The sequence of the human genome". Science. 291 (5507): 1304–51. Bibcode:2001Sci...291.1304V. doi:10.1126/science.1058040. PMID 11181995. S2CID 85981305.
  217. ^ "Psst, the human genome was never completely sequenced". STAT. 2017-06-20. Retrieved 2017-10-23.
  218. ^ Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. (May 2010). "A draft sequence of the Neandertal genome". Science. 328 (5979): 710–722. Bibcode:2010Sci...328..710G. doi:10.1126/science.1188021. PMC 5100745. PMID 20448178.
  219. ^ Chimpanzee Sequencing and Analysis Consortium. (September 2005). "Initial sequence of the chimpanzee genome and comparison with the human genome". Nature. 437 (7055): 69–87. Bibcode:2005Natur.437...69.. doi:10.1038/nature04072. PMID 16136131. S2CID 2638825.
  220. ^ Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, et al. (June 2012). "The bonobo genome compared with the chimpanzee and human genomes". Nature. 486 (7404): 527–31. Bibcode:2012Natur.486..527P. doi:10.1038/nature11128. PMC 3498939. PMID 22722832.
  221. ^ Ensembl entry
  222. ^ Worley KC, Warren WC, Rogers J, Locke D, Muzny DM, Mardis ER, et al. (Marmoset Genome Sequencing and Analysis Consortium) (August 2014). "The common marmoset genome provides insight into primate biology and evolution". Nature Genetics. 46 (8): 850–7. doi:10.1038/ng.3042. PMC 4138798. PMID 25038751.
  223. ^ Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA, Krasheninnikova K, et al. (December 2015). "Genomic legacy of the African cheetah, Acinonyx jubatus". Genome Biology. 16 (1): 277. doi:10.1186/s13059-015-0837-4. PMC 4676127. PMID 26653294.
  224. ^ Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S, Clamp M, et al. (November 2007). "Initial sequence and comparative analysis of the cat genome". Genome Research. 17 (11): 1675–89. doi:10.1101/gr.6380007. PMC 2045150. PMID 17975172.
  225. ^ a b c d Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, et al. (2013). "The tiger genome and comparative analysis with lion and snow leopard genomes". Nature Communications. 4: 2433. Bibcode:2013NatCo...4.2433C. doi:10.1038/ncomms3433. PMC 3778509. PMID 24045858.
  226. ^ a b Kim S, Cho YS, Kim HM, Chung O, Kim H, Jho S, et al. (October 2016). "Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly". Genome Biology. 17 (1): 211. doi:10.1186/s13059-016-1071-4. PMC 5090899. PMID 27802837.
  227. ^ Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–19. Bibcode:2005Natur.438..803L. doi:10.1038/nature04338. PMID 16341006. S2CID 4338513.
  228. ^ Gopalakrishnan S, Samaniego Castruita JA, Sinding MS, Kuderna LF, Räikkönen J, Petersen B, et al. (June 2017). "The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics". BMC Genomics. 18 (1): 495. doi:10.1186/s12864-017-3883-3. PMC 5492679. PMID 28662691.
  229. ^ Armstrong EE, Taylor RW, Prost S, Blinston P, van der Meer E, Madzikanda H, et al. (February 2019). "Cost-effective assembly of the African wild dog (Lycaon pictus) genome using linked reads". GigaScience. 8 (2). doi:10.1093/gigascience/giy124. PMC 6350039. PMID 30346553.
  230. ^ Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. (January 2010). "The sequence and de novo assembly of the giant panda genome". Nature. 463 (7279): 311–7. Bibcode:2010Natur.463..311L. doi:10.1038/nature08696. PMC 3951497. PMID 20010809.
  231. ^ Taylor GA, Kirk H, Coombe L, Jackman SD, Chu J, Tse K, et al. (November 2018). "The Genome of the North American Brown Bear or Grizzly: Ursus arctos ssp. horribilis". Genes. 9 (12): 598. doi:10.3390/genes9120598. PMC 6315469. PMID 30513700.
  232. ^ Srivastava A, Kumar Sarsani V, Fiddes I, Sheehan SM, Seger RL, Barter ME, et al. (February 2019). "Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation". DNA Research. 26 (1): 37–44. doi:10.1093/dnares/dsy036. PMC 6379037. PMID 30395234.
  233. ^ Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, et al. (May 2014). "Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears". Cell. 157 (4): 785–94. doi:10.1016/j.cell.2014.03.054. PMC 4089990. PMID 24813606.
  234. ^ Li B, Zhang G, Willersleve E, Wang J, Wang J (2011). "Genomic data from the polar bear (Ursus maritimus)". GigaScience Database. doi:10.5524/100008. Retrieved 2019-06-21.
  235. ^ a b c Foote AD, Liu Y, Thomas GW, Vinař T, Alföldi J, Deng J, et al. (March 2015). "Convergent evolution of the genomes of marine mammals". Nature Genetics. 47 (3): 272–5. doi:10.1038/ng.3198. PMC 4644735. PMID 25621460.
  236. ^ Jones SJ, Haulena M, Taylor GA, Chan S, Bilobram S, Warren RL, et al. (December 2017). "The Genome of the Northern Sea Otter (Enhydra lutris kenyoni)". Genes. 8 (12): 379. doi:10.3390/genes8120379. PMC 5748697. PMID 29232880.
  237. ^ Colella JP, Lan T, Schuster SC, Talbot SL, Cook JA, Lindqvist C (2018-05-31). "Mustela erminea finds that pulsed hybridization impacts evolution at highlatitudes". Communications Biology. 1 (1): 51. doi:10.1038/s42003-018-0058-y. PMC 6123727. PMID 30271934.
  238. ^ Peng X, Alföldi J, Gori K, Eisfeld AJ, Tyler SR, Tisoncik-Go J, et al. (December 2014). "The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease". Nature Biotechnology. 32 (12): 1250–5. doi:10.1038/nbt.3079. PMC 4262547. PMID 25402615.
  239. ^ Beichman AC, Koepfli KP, Li G, Murphy W, Dobrynin P, Kilver S, et al. (June 2019). "Aquatic adaptation and depleted diversity: a deep dive into the genomes of the sea otter and giant otter". Molecular Biology and Evolution. 36 (12): 2631–2655. doi:10.1093/molbev/msz101. PMC 7967881. PMID 31212313.
  240. ^ Dastjerdi A, Robert C, Watson M (2014). "Low coverage sequencing of two Asian elephant (Elephas maximus) genomes". GigaScience. 3: 12. doi:10.1186/2047-217X-3-12. PMC 4106201. PMID 25053995.
  241. ^ UCSC browser entry
  242. ^ Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, et al. (November 2009). "Genome sequence, comparative analysis, and population genetics of the domestic horse". Science. 326 (5954): 865–7. Bibcode:2009Sci...326..865W. doi:10.1126/science.1178158. PMC 3785132. PMID 19892987.
  243. ^ Kalbfleisch TS, Rice ES, DePriest MS, Walenz BP, Hestand MS, Vermeesch JR, et al. (2018-11-16). "Improved reference genome for the domestic horse increases assembly contiguity and composition". Communications Biology. 1 (1): 197. doi:10.1038/s42003-018-0199-z. PMC 6240028. PMID 30456315.
  244. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, et al. (June 2019). "Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits". Science. 364 (6446): eaav6202. Bibcode:2019Sci...364.6202C. doi:10.1126/science.aav6202. PMID 31221828. S2CID 195191415.
  245. ^ Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, et al. (January 2015). "Insights into the evolution of longevity from the bowhead whale genome". Cell Reports. 10 (1): 112–22. doi:10.1016/j.celrep.2014.12.008. PMC 4536333. PMID 25565328.
  246. ^ a b c d e Árnason Ú, Lammers F, Kumar V, Nilsson MA, Janke A (April 2018). "Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow". Science Advances. 4 (4): eaap9873. Bibcode:2018SciA....4.9873A. doi:10.1126/sciadv.aap9873. PMC 5884691. PMID 29632892.
  247. ^ a b c Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, Cha SS, et al. (January 2014). "Minke whale genome and aquatic adaptation in cetaceans". Nature Genetics. 46 (1): 88–92. doi:10.1038/ng.2835. PMC 4079537. PMID 24270359.
  248. ^ Wang K, Wang L, Lenstra JA, Jian J, Yang Y, Hu Q, et al. (April 2017). "The genome sequence of the wisent (Bison bonasus)". GigaScience. 6 (4): 1–5. doi:10.1093/gigascience/gix016. PMC 5530314. PMID 28327911.
  249. ^ Dong J, Hu Z, Wu C, Guo H, Zhou B, Lv J, et al. (July 2012). "Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population". Nature Genetics. 44 (8): 895–9. doi:10.1038/ng.2351. PMC 6628171. PMID 22797725.
  250. ^ Canavez FC, Luche DD, Stothard P, Leite KR, Sousa-Canavez JM, Plastow G, et al. (2012). "Genome sequence and assembly of Bos indicus". The Journal of Heredity. 103 (3): 342–8. doi:10.1093/jhered/esr153. PMID 22315242.
  251. ^ Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, et al. (April 2009). "The genome sequence of taurine cattle: a window to ruminant biology and evolution". Science. 324 (5926): 522–8. Bibcode:2009Sci...324..522A. doi:10.1126/science.1169588. PMC 2943200. PMID 19390049.
  252. ^ Williams JL, Iamartino D, Pruitt KD, Sonstegard T, Smith TP, Low WY, et al. (October 2017). "Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50)". GigaScience. 6 (10): 1–6. doi:10.1093/gigascience/gix088. PMC 5737279. PMID 29048578.
  253. ^ Koepfli KP, Tamazian G, Wildt D, Dobrynin P, Kim C, Frandsen PB, et al. (June 2019). "in Situ Populations". G3. 9 (6): 1785–1793. doi:10.1534/g3.119.400084. PMC 6553546. PMID 31000506.
  254. ^ Farré M, Li Q, Zhou Y, Damas J, Chemnick LG, Kim J, et al. (February 2019). "A near-chromosome-scale genome assembly of the gemsbok (Oryx gazella): an iconic antelope of the Kalahari desert". GigaScience. 8 (2). doi:10.1093/gigascience/giy162. PMC 6351727. PMID 30649288.
  255. ^ Yang Y, Wang Y, Zhao Y, Zhang X, Li R, Chen L, et al. (December 2017). "Draft genome of the Marco Polo Sheep (Ovis ammon polii)". GigaScience. 6 (12): 1–7. doi:10.1093/gigascience/gix106. PMC 5740985. PMID 29112761.
  256. ^ Zhang C, Chen L, Zhou Y, Wang K, Chemnick LG, Ryder OA, et al. (February 2018). "Draft genome of the milu (Elaphurus davidianus)". GigaScience. 7 (2). doi:10.1093/gigascience/gix130. PMC 5824821. PMID 29267854.
  257. ^ Li Z, Lin Z, Ba H, Chen L, Yang Y, Wang K, et al. (December 2017). "Draft genome of the reindeer (Rangifer tarandus)". GigaScience. 6 (12): 1–5. doi:10.1093/gigascience/gix102. PMC 5726476. PMID 29099922.
  258. ^ Ming Y, Jian J, Yu X, Wang J, Liu W (May 2019). "The genome resources for conservation of Indo-Pacific humpback dolphin, Sousa chinensis". Scientific Data. 6 (1): 68. Bibcode:2019NatSD...6...68M. doi:10.1038/s41597-019-0078-6. PMC 6531461. PMID 31118413.
  259. ^ Farré M, Li Q, Darolti I, Zhou Y, Damas J, Proskuryakova AA, et al. (August 2019). "An integrated chromosome-scale genome assembly of the Masai giraffe (Giraffa camelopardalis tippelskirchi)". GigaScience. 8 (8). doi:10.1093/gigascience/giz090. PMC 6669057. PMID 31367745.
  260. ^ Ip S (12 December 2017). "Beluga whale genome sequenced for the first time in Vancouver". Vancouver Sun.
  261. ^ Fan Z, Li W, Jin J, Cui K, Yan C, Peng C, et al. (April 2018). "The draft genome sequence of forest musk deer (Moschus berezovskii)". GigaScience. 7 (4). doi:10.1093/gigascience/giy038. PMC 5906906. PMID 29635287.
  262. ^ Fan G, Zhang Y, Liu X, Wang J, Sun Z, Sun S, et al. (July 2019). "The first chromosome-level genome for a marine mammal as a resource to study ecology and evolution" (PDF). Molecular Ecology Resources. 19 (4): 944–956. doi:10.1111/1755-0998.13003. PMID 30735609. S2CID 73451140.
  263. ^ Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. (November 2012). "Analyses of pig genomes provide insight into porcine demography and evolution". Nature. 491 (7424): 393–8. Bibcode:2012Natur.491..393G. doi:10.1038/nature11622. PMC 3566564. PMID 23151582.
  264. ^ Herrera-Alvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ (2018-09-23). "How to make a rodent giant: Genomic basis and tradeoffs of gigantism in the capybara, the world's largest rodent". bioRxiv 10.1101/424606.
  265. ^ Duckett DJ, Sullivan J, Pirro S, Carstens BC (May 2021). "Genomic Resources for the North American Water Vole (Microtus richardsoni) and the Montane Vole (Microtus montanus)". Gigabyte. 1. doi:10.46471/gigabyte.19.
  266. ^ [1]
  267. ^ Duckett DJ, Sullivan J, Pirro S, Carstens BC (May 2021). "Genomic Resources for the North American Water Vole (Microtus richardsoni) and the Montane Vole (Microtus montanus)". Gigabyte. 1. doi:10.46471/gigabyte.19.
  268. ^ [2]
  269. ^ Long AD, Baldwin-Brown J, Tao Y, Cook VJ, Balderrama-Gutierrez G, Crobett-Detig R, Mortazavi R, Barbour AG (July 2019). "The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections". Science Advances. 5 (7): eaaw6441. Bibcode:2019SciA....5.6441L. doi:10.1126/sciadv.aaw6441. PMC 6656541. PMID 31355335.
  270. ^ Hardin A, Nevonen KA, Eckalbar WL, Carbone L, Ahituv N (Aug 2019). "Comparative genomic characterization of the multimammate mouse Mastomys coucha". Molecular Biology and Evolution. 36 (12): 2805–2812. doi:10.1093/molbev/msz188. PMC 6878952. PMID 31424545.
  271. ^ Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. (December 2002). "Initial sequencing and comparative analysis of the mouse genome". Nature. 420 (6915): 520–62. Bibcode:2002Natur.420..520W. doi:10.1038/nature01262. PMID 12466850.
  272. ^ Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. (April 2004). "Genome sequence of the Brown Norway rat yields insights into mammalian evolution". Nature. 428 (6982): 493–521. Bibcode:2004Natur.428..493G. doi:10.1038/nature02426. PMID 15057822. S2CID 4415600.
  273. ^ Ensembl entry
  274. ^ a b Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, et al. (March 2018). "Hemimetabolous genomes reveal molecular basis of termite eusociality". Nature Ecology & Evolution. 2 (3): 557–566. doi:10.1038/s41559-017-0459-1. PMC 6482461. PMID 29403074.
  275. ^ Li S, Zhu S, Jia Q, Yuan D, Ren C, Li K, et al. (March 2018). "The genomic and functional landscapes of developmental plasticity in the American cockroach". Nature Communications. 9 (1): 1008. Bibcode:2018NatCo...9.1008L. doi:10.1038/s41467-018-03281-1. PMC 5861062. PMID 29559629.
  276. ^ Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, et al. (May 2014). "Molecular traces of alternative social organization in a termite genome". Nature Communications. 5: 3636. Bibcode:2014NatCo...5.3636T. doi:10.1038/ncomms4636. PMID 24845553.
  277. ^ Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. (October 2014). "Complementary symbiont contributions to plant decomposition in a fungus-farming termite". Proceedings of the National Academy of Sciences of the United States of America. 111 (40): 14500–5. Bibcode:2014PNAS..11114500P. doi:10.1073/pnas.1319718111. PMC 4209977. PMID 25246537.
  278. ^ Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. (March 2013). "Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest". Genome Biology. 14 (3): R27. doi:10.1186/gb-2013-14-3-r27. PMC 4053930. PMID 23537049.
  279. ^ a b Fallon TR, Lower SE, Chang CH, Bessho-Uehara M, Martin GJ, Bewick AJ, et al. (October 2018). Waterhouse R, Tautz D (eds.). "Firefly genomes illuminate parallel origins of bioluminescence in beetles". eLife. 7: e36495. doi:10.7554/eLife.36495. PMC 6191289. PMID 30324905.
  280. ^ Wang K, Li P, Gao Y, Liu C, Wang Q, Yin J, et al. (April 2019). "De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis)". GigaScience. 8 (4). doi:10.1093/gigascience/giz019. PMC 6449472. PMID 30949689.
  281. ^ Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, et al. (April 2008). "The genome of the model beetle and pest Tribolium castaneum" (PDF). Nature. 452 (7190): 949–55. Bibcode:2008Natur.452..949R. doi:10.1038/nature06784. PMID 18362917. S2CID 4402128.
  282. ^ Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, Hiller M, Janke A, Bálint M, Huettel B (May 2021). "Two high-quality de novo genomes from single ethanol-preserved specimens of tiny metazoans (Collembola)". GigaScience. 10 (5). doi:10.1093/gigascience/giab035. PMC 8138834. PMID 34018554.
  283. ^ [3]
  284. ^ Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, Hiller M, Janke A, Bálint M, Huettel B (May 2021). "Two high-quality de novo genomes from single ethanol-preserved specimens of tiny metazoans (Collembola)". GigaScience. 10 (5). doi:10.1093/gigascience/giab035. PMC 8138834. PMID 34018554.
  285. ^ [4]
  286. ^ Meng F, Liu Z, Han H, Finkelbergs D, Jiang Y, Zhu M, et al. (March 2020). "Chromosome-level genome assembly of Aldrichina grahami, a forensically important blowfly". GigaScience. 9 (3). doi:10.1093/gigascience/giaa020. PMC 7081965. PMID 32191812.
  287. ^ Drukewitz SH, Bokelmann L, Undheim EA, von Reumont BM (July 2019). "Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects". GigaScience. 8 (7). doi:10.1093/gigascience/giz081. PMC 6615979. PMID 31289835.
  288. ^ Kim S, Oh M, Jung W, Park J, Choi HG, Shin SC (March 2017). "Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula". GigaScience. 6 (3): 1–8. doi:10.1093/gigascience/giw009. PMC 5467013. PMID 28327954.
  289. ^ Dikow RB, Frandsen PB, Turcatel M, Dikow T (2017-01-31). "Proctacanthus coquilletti (Insecta: Diptera: Asilidae) and 16 representative transcriptomes". PeerJ. 5: e2951. doi:10.7717/peerj.2951. PMC 5289110. PMID 28168115.
  290. ^ Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. (June 2007). "Genome sequence of Aedes aegypti, a major arbovirus vector". Science. 316 (5832): 1718–23. Bibcode:2007Sci...316.1718N. doi:10.1126/science.1138878. PMC 2868357. PMID 17510324.
  291. ^ Chen XG, Jiang X, Gu J, Xu M, Wu Y, Deng Y, et al. (November 2015). "Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution". Proceedings of the National Academy of Sciences of the United States of America. 112 (44): E5907-15. Bibcode:2015PNAS..112E5907C. doi:10.1073/pnas.1516410112. PMC 4640774. PMID 26483478.
  292. ^ Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. (October 2002). "The genome sequence of the malaria mosquito Anopheles gambiae". Science. 298 (5591): 129–49. Bibcode:2002Sci...298..129H. doi:10.1126/science.1076181. PMID 12364791. S2CID 4512225.H
  293. ^ a b Lawniczak MK, Emrich SJ, Holloway AK, Regier AP, Olson M, White B, et al. (October 2010). "Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences". Science. 330 (6003): 512–4. Bibcode:2010Sci...330..512L. doi:10.1126/science.1195755. PMC 3674514. PMID 20966253.
  294. ^ Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, et al. (January 2014). "Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites". BMC Genomics. 15 (1): 42. doi:10.1186/1471-2164-15-42. PMC 3901762. PMID 24438588.
  295. ^ a b c d e f g h i j k l m n o Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. (January 2015). "Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes". Science. 347 (6217): 1258522. doi:10.1126/science.1258522. PMC 4380271. PMID 25554792.
  296. ^ Ghurye J, Koren S, Small ST, Redmond S, Howell P, Phillippy AM, Besansky NJ (June 2019). "A chromosome-scale assembly of the major African malaria vector Anopheles funestus". GigaScience. 8 (6). doi:10.1093/gigascience/giz063. PMC 6545970. PMID 31157884.
  297. ^ Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, et al. (October 2010). "Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics". Science. 330 (6000): 86–8. Bibcode:2010Sci...330...86A. doi:10.1126/science.1191864. PMC 3740384. PMID 20929810.
  298. ^ Zhou Q, Zhu HM, Huang QF, Zhao L, Zhang GJ, Roy SW, et al. (March 2012). "Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans". BMC Genomics. 13: 109. doi:10.1186/1471-2164-13-109. PMC 3353239. PMID 22439699.
  299. ^ a b c d e f g h i j Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, et al. (November 2007). "Evolution of genes and genomes on the Drosophila phylogeny". Nature. 450 (7167): 203–18. Bibcode:2007Natur.450..203C. doi:10.1038/nature06341. PMID 17994087. S2CID 2416812.
  300. ^ a b c d e f g h "Drosophila modENCODE Project BCM-HGSC". Baylor College of Medicine, Human Genome Sequencing Center.
  301. ^ Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. (March 2000). "The genome sequence of Drosophila melanogaster". Science. 287 (5461): 2185–95. Bibcode:2000Sci...287.2185.. doi:10.1126/science.287.5461.2185. PMID 10731132.
  302. ^ Hamilton PT, Leong JS, Koop BF, Perlman SJ (March 2014). "Transcriptional responses in a Drosophila defensive symbiosis". Molecular Ecology. 23 (6): 1558–70. doi:10.1111/mec.12603. PMID 24274471. S2CID 2964885.
  303. ^ Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, et al. (January 2005). "Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution". Genome Research. 15 (1): 1–18. doi:10.1101/gr.3059305. PMC 540289. PMID 15632085.
  304. ^ "The Drosophila santomea genome - release 1.0". Andolfatto Lab. Princeton University. Archived from the original on 2018-10-22. Retrieved 2012-05-23.
  305. ^ a b Jiménez-Guri E, Huerta-Cepas J, Cozzuto L, Wotton KR, Kang H, Himmelbauer H, et al. (February 2013). "Comparative transcriptomics of early dipteran development". BMC Genomics. 14: 123. doi:10.1186/1471-2164-14-123. PMC 3616871. PMID 23432914.
  306. ^ Martinson EO, Peyton J, Kelkar YD, Jennings EC, Benoit JB, Werren JH, Denlinger DL (May 2019). "Sarcophaga bullata". G3. 9 (5): 1313–1320. doi:10.1534/g3.119.400148. PMC 6505164. PMID 30926723.
  307. ^ Lemke S, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U (May 2011). "BMP signaling components in embryonic transcriptomes of the hover fly Episyrphus balteatus (Syrphidae)". BMC Genomics. 12: 278. doi:10.1186/1471-2164-12-278. PMC 3224130. PMID 21627820.
  308. ^ International Aphid Genomics Consortium (February 2010). "Genome sequence of the pea aphid Acyrthosiphon pisum". PLOS Biology. 8 (2): e1000313. doi:10.1371/journal.pbio.1000313. PMC 2826372. PMID 20186266.
  309. ^ Yang P, Yu S, Hao J, Liu W, Zhao Z, Zhu Z, et al. (September 2019). "Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects". GigaScience. 8 (9). doi:10.1093/gigascience/giz113. PMC 6743827. PMID 31518402.
  310. ^ Zhu J, Jiang F, Wang X, Yang P, Bao Y, Zhao W, et al. (December 2017). "Genome sequence of the small brown planthopper, Laodelphax striatellus". GigaScience. 6 (12): 1–12. doi:10.1093/gigascience/gix109. PMC 5740986. PMID 29136191.
  311. ^ Kingan SB, Urban J, Lambert CC, Baybayan P, Childers AK, Coates B, et al. (October 2019). "A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system". GigaScience. 8 (10). doi:10.1093/gigascience/giz122. PMC 6791401. PMID 31609423.
  312. ^ Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, et al. (December 2015). "Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection". Proceedings of the National Academy of Sciences of the United States of America. 112 (48): 14936–41. Bibcode:2015PNAS..11214936M. doi:10.1073/pnas.1506226112. PMC 4672799. PMID 26627243.
  313. ^ Chen W, Shakir S, Bigham M, Richter A, Fei Z, Jander G (April 2019). "Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch)". GigaScience. 8 (4). doi:10.1093/gigascience/giz033. PMC 6451198. PMID 30953568.
  314. ^ Chen J, Fan J, Zhang Y, Li Q, Zhang S, Yin H, et al. (2019-08-01). "A chromosome-level draft genome of the grain aphid Sitobion miscanthi". GigaScience. 8 (8). doi:10.1093/gigascience/giz101. PMC 6701489. PMID 31430367.
  315. ^ Liu Q, Guo Y, Zhang Y, Hu W, Li Y, Zhu D, et al. (August 2019). "A chromosomal-level genome assembly for the insect vector for Chagas disease, Triatoma rubrofasciata". GigaScience. 8 (8). doi:10.1093/gigascience/giz089. PMC 6699579. PMID 31425588.
  316. ^ Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y, Hu H, et al. (August 2011). "The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming". Genome Research. 21 (8): 1339–48. doi:10.1101/gr.121392.111. PMC 3149500. PMID 21719571.
  317. ^ Honeybee Genome Sequencing Consortium (October 2006). "Insights into social insects from the genome of the honeybee Apis mellifera". Nature. 443 (7114): 931–49. Bibcode:2006Natur.443..931T. doi:10.1038/nature05260. PMC 2048586. PMID 17073008.
  318. ^ Suen G, Teiling C, Li L, Holt C, Abouheif E, Bornberg-Bauer E, et al. (February 2011). Copenhaver G (ed.). "The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle". PLOS Genetics. 7 (2): e1002007. doi:10.1371/journal.pgen.1002007. PMC 3037820. PMID 21347285.
  319. ^ a b Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, et al. (August 2010). "Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator". Science. 329 (5995): 1068–71. Bibcode:2010Sci...329.1068B. doi:10.1126/science.1192428. PMC 3772619. PMID 20798317.
  320. ^ Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C, Hu H, Zhang G, Kronauer DJ (February 2014). "The genome of the clonal raider ant Cerapachys biroi". Current Biology. 24 (4): 451–8. doi:10.1016/j.cub.2014.01.018. PMC 3961065. PMID 24508170.
  321. ^ Konorov EA, Nikitin MA, Mikhailov KV, Lysenkov SN, Belenky M, Chang PL, Nuzhdin SV, Scobeyeva VA (February 2017). "Genomic exaptation enables Lasius niger adaptation to urban environments". BMC Evolutionary Biology. 17 (Suppl 1): 39. doi:10.1186/s12862-016-0867-x. PMC 5333191. PMID 28251870.
  322. ^ Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, et al. (April 2011). "Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5673–8. Bibcode:2011PNAS..108.5673S. doi:10.1073/pnas.1008617108. PMC 3078359. PMID 21282631.
  323. ^ a b c Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, et al. (January 2010). "Functional and evolutionary insights from the genomes of three parasitoid Nasonia species". Science. 327 (5963): 343–8. Bibcode:2010Sci...327..343.. doi:10.1126/science.1178028. PMC 2849982. PMID 20075255.
  324. ^ Kapheim KM, Pan H, Li C, Blatti C, Harpur BA, Ioannidis P, et al. (March 2019). "Nomia melanderi)". G3. 9 (3): 625–634. doi:10.1534/g3.118.200865. PMC 6404593. PMID 30642875.
  325. ^ Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A, Yandell M, et al. (April 2011). "Draft genome of the red harvester ant Pogonomyrmex barbatus". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5667–72. Bibcode:2011PNAS..108.5667S. doi:10.1073/pnas.1007901108. PMC 3078412. PMID 21282651.
  326. ^ Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, et al. (April 2011). "The genome of the fire ant Solenopsis invicta". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5679–84. Bibcode:2011PNAS..108.5679W. doi:10.1073/pnas.1009690108. PMC 3078418. PMID 21282665.
  327. ^ Shen J, Cong Q, Borek D, Otwinowski Z, Grishin NV (July 2017). "Complete Genome of Achalarus lyciades, The First Representative of the Eudaminae Subfamily of Skippers". Current Genomics. 18 (4). doi:10.2174/1389202918666170426113315. PMC 5635620. PMID 29081692.
  328. ^ Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, et al. (January 2018). "Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae". GigaScience. 7 (1): 1–11. doi:10.1093/gigascience/gix113. PMC 5774507. PMID 29186418.
  329. ^ Yen EC, McCarthy SA, Galarza JA, Generalovic TN, Pelan S, Nguyen P, et al. (August 2020). "A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning". GigaScience. 9 (8). doi:10.1093/gigascience/giaa088. PMC 7433188. PMID 32808665.
  330. ^ Nowell RW, Elsworth B, Oostra V, Zwaan BJ, Wheat CW, Saastamoinen M, et al. (July 2017). "A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana". GigaScience. 6 (7): 1–7. doi:10.1093/gigascience/gix035. PMC 5493746. PMID 28486658.
  331. ^ Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T (February 2004). "The genome sequence of silkworm, Bombyx mori". DNA Research. 11 (1): 27–35. doi:10.1093/dnares/11.1.27. PMID 15141943.
  332. ^ Cong Q, Shen J, Borek D, Robbins RK, Otwinowski Z, Grishin NV (April 2016). "Complete genomes of Hairstreak butterflies, their speciation and nucleo-mitochondrial incongruence". scientific reports. 6 (24863). doi:10.1038/srep24863. PMC 4848470. PMID 27120974.
  333. ^ Cong Q, Shen J, Borek D, Robbins RK, Otwinowski Z, Grishin NV (April 2016). "Complete genomes of Hairstreak butterflies, their speciation and nucleo-mitochondrial incongruence". scientific reports. 6 (24863). doi:10.1038/srep24863. PMC 4848470. PMID 27120974.
  334. ^ Wan F, Yin C, Tang R, Chen M, Wu Q, Huang C, et al. (September 2019). "A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance". Nature Communications. 10 (1): 4237. Bibcode:2019NatCo..10.4237W. doi:10.1038/s41467-019-12175-9. PMC 6748993. PMID 31530873.
  335. ^ Zhan S, Merlin C, Boore JL, Reppert SM (November 2011). "The monarch butterfly genome yields insights into long-distance migration". Cell. 147 (5): 1171–85. doi:10.1016/j.cell.2011.09.052. PMC 3225893. PMID 22118469.
  336. ^ Dasmahapatra KK (July 2012). "Butterfly genome reveals promiscuous exchange of mimicry adaptations among species". Nature. 487 (7405): 94–8. Bibcode:2012Natur.487...94T. doi:10.1038/nature11041. PMC 3398145. PMID 22722851.
  337. ^ Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, et al. (September 2014). "The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera". Nature Communications. 5 (1): 4737. Bibcode:2014NatCo...5.4737A. doi:10.1038/ncomms5737. PMC 4164777. PMID 25189940.
  338. ^ Cong Q, Li W, Borek D, Otwinowski Z, Grishin NV (February 2019). "The Bear Giant-Skipper genome suggests genetic adaptations to living inside yucca roots". Molecular Genetics and Genomics. 294 (1): 211–226. doi:10.1007/s00438-018-1494-6. PMC 6436644. PMID 30293092.
  339. ^ Lu S, Yang J, Dai X, Xie F, He J, Dong Z, et al. (November 2019). "Chromosomal-level reference genome of Chinese peacock butterfly (Papilio bianor) based on third-generation DNA sequencing and Hi-C analysis". GigaScience. 8 (11). doi:10.1093/gigascience/giz128. PMC 6827417. PMID 31682256.
  340. ^ Shen J, Cong Q, Kinch LN, Borek D, Otwinowski Z, Grishin NV (2016-11-03). "Pieris rapae, a resilient alien, a cabbage pest, and a source of anti-cancer proteins". F1000Research. 5: 2631. doi: