List of sequenced animal genomes

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

This list of sequenced animal genomes contains animal species for which complete genome sequences have been assembled, annotated and published. Substantially complete draft genomes are included, but not partial genome sequences or organelle-only sequences.











Cartilaginous fish[edit]

Bony fish[edit]

















See also[edit]


  1. ^ Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. (August 2010). "The Amphimedon queenslandica genome and the evolution of animal complexity". Nature. 466 (7307): 720–6. doi:10.1038/nature09201. PMC 3130542Freely accessible. PMID 20686567. 
  2. ^ National Human Genome Research Institute (2012). "NHGRI Mnemiopsis Genome Project". Retrieved 2013-02-05. 
  3. ^ Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, et al. (December 2013). "The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution". Science. 342 (6164): 1242592. doi:10.1126/science.1242592. PMC 3920664Freely accessible. PMID 24337300. 
  4. ^ Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. (June 2014). "The ctenophore genome and the evolutionary origins of neural systems". Nature. 510 (7503): 109–14. doi:10.1038/nature13400. PMC 4337882Freely accessible. PMID 24847885. 
  5. ^ Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, et al. (August 2008). "The Trichoplax genome and the nature of placozoans". Nature. 454 (7207): 955–60. Bibcode:2008Natur.454..955S. doi:10.1038/nature07191. PMID 18719581. 
  6. ^ Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, et al. (March 2010). "The dynamic genome of Hydra". Nature. 464 (7288): 592–6. Bibcode:2010Natur.464..592C. doi:10.1038/nature08830. PMC 4479502Freely accessible. PMID 20228792. 
  7. ^ Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. (July 2007). "Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization". Science. 317 (5834): 86–94. Bibcode:2007Sci...317...86P. doi:10.1126/science.1139158. PMID 17615350. 
  8. ^ Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. (September 2015). "The genome of Aiptasia, a sea anemone model for coral symbiosis". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): 11893–8. doi:10.1073/pnas.1513318112. PMC 4586855Freely accessible. PMID 26324906. 
  9. ^ Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. (July 2011). "Using the Acropora digitifera genome to understand coral responses to environmental change". Nature. 476 (7360): 320–3. doi:10.1038/nature10249. PMID 21785439. 
  10. ^ Jiang, Justin (2017). "Renilla muelleri genome". reefgenomics. 
  11. ^ Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, et al. (December 2017). "Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals". Scientific Reports. 7 (1): 17583. doi:10.1038/s41598-017-17484-x. PMID 29242500. 
  12. ^ a b Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, et al. (November 2015). "Hemichordate genomes and deuterostome origins". Nature. 527 (7579): 459–65. doi:10.1038/nature16150. PMC 4729200Freely accessible. PMID 26580012. 
  13. ^ Baughman KW, McDougall C, Cummins SF, Hall M, Degnan BM, Satoh N, Shoguchi E (December 2014). "Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci". Genesis. 52 (12): 952–8. doi:10.1002/dvg.22840. PMID 25394327. 
  14. ^ Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, et al. (November 2006). "The genome of the sea urchin Strongylocentrotus purpuratus". Science. 314 (5801): 941–52. Bibcode:2006Sci...314..941S. doi:10.1126/science.1133609. PMC 3159423Freely accessible. PMID 17095691. 
  15. ^ Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, et al. (December 2002). "The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins". Science. 298 (5601): 2157–67. Bibcode:2002Sci...298.2157D. doi:10.1126/science.1080049. PMID 12481130. 
  16. ^ Small KS, Brudno M, Hill MM, Sidow A (2007). "A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome". Genome Biology. 8 (3): R41. doi:10.1186/gb-2007-8-3-r41. PMC 1868934Freely accessible. PMID 17374142. 
  17. ^ Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, et al. (December 2001). "Miniature genome in the marine chordate Oikopleura dioica". Science. 294 (5551): 2506. doi:10.1126/science.294.5551.2506. PMID 11752568. 
  18. ^ Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. (June 2008). "The amphioxus genome and the evolution of the chordate karyotype". Nature. 453 (7198): 1064–71. Bibcode:2008Natur.453.1064P. doi:10.1038/nature06967. PMID 18563158. 
  19. ^ Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W (July 2009). "The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage". BMC Evolutionary Biology. 9: 180. doi:10.1186/1471-2148-9-180. PMC 2728731Freely accessible. PMID 19646260. 
  20. ^ Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, et al. (April 2013). "Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution". Nature Genetics. 45 (4): 415–21, 421e1–2. doi:10.1038/ng.2568. PMC 3709584Freely accessible. PMID 23435085. 
  21. ^ Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, et al. (April 2007). "Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome". PLoS Biology. 5 (4): e101. doi:10.1371/journal.pbio.0050101. PMC 1845163Freely accessible. PMID 17407382. 
  22. ^ Read TD, Petit RA, Joseph SJ, Alam MT, Weil MR, Ahmad M, et al. (July 2017). "Draft sequencing and assembly of the genome of the world's largest fish, the whale shark: Rhincodon typus Smith 1828". BMC Genomics. 18 (1): 532. doi:10.1186/s12864-017-3926-9. PMC 5513125Freely accessible. PMID 28709399. 
  23. ^ Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, et al. (June 2007). "The medaka draft genome and insights into vertebrate genome evolution". Nature. 447 (7145): 714–9. doi:10.1038/nature05846. PMID 17554307. 
  24. ^ Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H, Maccallum I, et al. (2013). "The African coelacanth genome provides insight into tetrapod evolution". Nature. 496 (7445): 311–316. Bibcode:2013Natur.496..311A. doi:10.1038/nature12027. PMC 3633110Freely accessible. PMID 23598338. 
  25. ^ Ensembl entry
  26. ^ "Ensembl genome browser 59: Danio rerio - Description - Search Ensembl Zebrafish". Retrieved 2010-08-27. 
  27. ^ Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, et al. (May 2013). "The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits". Nature Genetics. 45 (5): 567–72. doi:10.1038/ng.2604. PMC 3677569Freely accessible. PMID 23542700. 
  28. ^ Harel I, Benayoun BA, Machado B, Singh PP, Hu CK, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A (February 2015). "A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate". Cell. 160 (5): 1013–1026. doi:10.1016/j.cell.2015.01.038. PMC 4344913Freely accessible. PMID 25684364. 
  29. ^ Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, et al. (December 2015). "Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish". Cell. 163 (6): 1527–38. doi:10.1016/j.cell.2015.10.071. PMID 26638077. 
  30. ^ Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu CK, Clément-Ziza M, Willemsen D, Cui R, Harel I, Machado BE, Yee MC, Sharp SC, Bustamante CD, Beyer A, Johnson EA, Brunet A (December 2015). "The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan". Cell. 163 (6): 1539–54. doi:10.1016/j.cell.2015.11.008. PMC 4684691Freely accessible. PMID 26638078. 
  31. ^ Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, et al. (2014). "The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei". PloS One. 9 (7): e102089. doi:10.1371/journal.pone.0102089. PMC 4113312Freely accessible. PMID 25069045. 
  32. ^ Ensembl Pre entry[permanent dead link]
  33. ^ Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. (April 2012). "The genomic basis of adaptive evolution in threespine sticklebacks". Nature. 484 (7392): 55–61. Bibcode:2012Natur.484...55.. doi:10.1038/nature10944. PMC 3322419Freely accessible. PMID 22481358. 
  34. ^ Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH, Novina CD, et al. (June 2014). "Nonhuman genetics. Genomic basis for the convergent evolution of electric organs". Science. 344 (6191): 1522–5. doi:10.1126/science.1254432. PMID 24970089. 
  35. ^ "Spotted gar". Ensembl. Retrieved 11 September 2014. 
  36. ^ Liu K, Xu D, Li J, Bian C, Duan J, Zhou Y, et al. (April 2017). "Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius". GigaScience. 6 (4): 1–6. doi:10.1093/gigascience/giw012. PMID 28327943. 
  37. ^ Xu J, Bian C, Chen K, Liu G, Jiang Y, Luo Q, et al. (April 2017). "Draft genome of the Northern snakehead, Channa argus". GigaScience. 6 (4): 1–5. doi:10.1093/gigascience/gix011. PMID 28327946. 
  38. ^ "The draft genome of the large yellow croaker reveals well-developed innate immunity". Nature Communications. 2014. doi:10.1038/ncomms622. 
  39. ^ Ahn DH, Shin SC, Kim BM, Kang S, Kim JH, Ahn I, Park J, Park H (August 2017). "Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti". GigaScience. 6 (8): 1–6. doi:10.1093/gigascience/gix060. PMC 5597851Freely accessible. PMID 28873966. 
  40. ^ Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. (May 2016). "The Atlantic salmon genome provides insights into rediploidization". Nature. 533 (7602): 200–5. doi:10.1038/nature17164. PMID 27088604. 
  41. ^ Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. (April 2014). "The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates". Nature Communications. 5: 3657. doi:10.1038/ncomms4657. PMC 4071752Freely accessible. PMID 24755649. 
  42. ^ Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, et al. (June 2016). "The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts". Nature Communications. 7: 11757. doi:10.1038/ncomms11757. PMC 4895719Freely accessible. PMID 27249958. 
  43. ^ "Fourth Genome Assembly". Fugu Genome Project. International Fugu Genome Consortium. Archived from the original on 2010-01-31. 
  44. ^ Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, et al. (August 2002). "Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes". Science. 297 (5585): 1301–10. Bibcode:2002Sci...297.1301A. doi:10.1126/science.1072104. PMID 12142439. 
  45. ^ Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. (October 2004). "Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype". Nature. 431 (7011): 946–57. Bibcode:2004Natur.431..946J. doi:10.1038/nature03025. PMID 15496914. 
  46. ^ Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AW, Pippel M, et al. (February 2018). "The axolotl genome and the evolution of key tissue formation regulators". Nature. 554 (7690): 50–55. doi:10.1038/nature25458. PMID 29364872. 
  47. ^ Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. (April 2010). "The genome of the Western clawed frog Xenopus tropicalis". Science. 328 (5978): 633–6. Bibcode:2010Sci...328..633H. doi:10.1126/science.1183670. PMC 2994648Freely accessible. PMID 20431018. 
  48. ^ Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, et al. (March 2015). "Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes". Proceedings of the National Academy of Sciences of the United States of America. 112 (11): E1257–62. doi:10.1073/pnas.1501764112. PMC 4371989Freely accessible. PMID 25733869. 
  49. ^ Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, Pandoh P, Kirk H, Zhao Y, Jones M, Mungall AJ, Coope R, Pleasance S, Moore RA, Holt RA, Round JM, Ohora S, Walle BV, Veldhoen N, Helbing CC, Birol I (November 2017). "The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA". Nature Communications. 8 (1): 1433. doi:10.1038/s41467-017-01316-7. PMID 29127278. 
  50. ^ Edwards RJ, Tuipulotu DE, Amos TG, O'Meally D, Richardson MF, Russell TL, et al. (August 2018). "Draft genome assembly of the invasive cane toad, Rhinella marina". GigaScience. doi:10.1093/gigascience/giy095. PMID 30101298. 
  51. ^ a b c St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, et al. (January 2012). "Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes". Genome Biology. 13 (1): 415. doi:10.1186/gb-2012-13-1-415. PMC 3334581Freely accessible. PMID 22293439. 
  52. ^ Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, et al. (September 2013). "Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator". Cell Research. 23 (9): 1091–105. doi:10.1038/cr.2013.104. PMC 3760627Freely accessible. PMID 23917531. 
  53. ^ "GigaDB Dataset - DOI 10.5524/100077 - Genomic data of the Chinese alligator (Alligator sinensis)". doi:10.5524/100077. 
  54. ^ Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, et al. (August 2011). "The genome of the green anole lizard and a comparative analysis with birds and mammals". Nature. 477 (7366): 587–91. Bibcode:2011Natur.477..587A. doi:10.1038/nature10390. PMC 3184186Freely accessible. PMID 21881562. 
  55. ^ Ullate-Agote A, Milinkovitch MC, Tzika AC (2015-07-02). "The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates". The International Journal of Developmental Biology. 58 (10-12): 881–8. doi:10.1387/ijdb.150060at. PMID 26154328. 
  56. ^ Castoe TA, de Koning AP, Hall KT, Card DC, Schield DR, Fujita MK, et al. (December 2013). "The Burmese python genome reveals the molecular basis for extreme adaptation in snakes". Proceedings of the National Academy of Sciences of the United States of America. 110 (51): 20645–50. doi:10.1073/pnas.1314475110. PMC 3870669Freely accessible. PMID 24297902. 
  57. ^ Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, et al. (December 2013). "The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system". Proceedings of the National Academy of Sciences of the United States of America. 110 (51): 20651–6. doi:10.1073/pnas.1314702110. PMC 3870661Freely accessible. PMID 24297900. 
  58. ^ Song B, Cheng S, Sun Y, Zhong X, Jin J, Guan R, Murphy RW, Che J, Zhang Y, Liu X (2015). "A genome draft of the legless anguid lizard, Ophisaurus gracilis". GigaScience. 4: 17. doi:10.1186/s13742-015-0056-7. PMC 4391233Freely accessible. PMID 25859342. 
  59. ^ Georges A, Li Q, Lian J, O'Meally D, Deakin J, Wang Z, et al. (2015-12-01). "High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps". GigaScience. 4 (1): 45. doi:10.1186/s13742-015-0085-2. PMID 26421146. 
  60. ^ Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, et al. (July 2017). "Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus". GigaScience. 6 (7): 1–6. doi:10.1093/gigascience/gix041. PMID 28595343. 
  61. ^ a b Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. (June 2013). "The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan". Nature Genetics. 45 (6): 701–706. doi:10.1038/ng.2615. PMC 4000948Freely accessible. PMID 23624526. 
  62. ^ Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, et al. (March 2013). "The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage". Genome Biology. 14 (3): R28. doi:10.1186/gb-2013-14-3-r28. PMC 4054807Freely accessible. PMID 23537068. 
  63. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. (December 2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–31. doi:10.1126/science.1253451. PMC 4405904Freely accessible. PMID 25504713. 
  64. ^ "Golden Eagle Genome Sequenced". 
  65. ^ Huang Y, Li Y, Burt DW, Chen H, Zhang Y, Qian W, et al. (July 2013). "The duck genome and transcriptome provide insight into an avian influenza virus reservoir species". Nature Genetics. 45 (7): 776–783. doi:10.1038/ng.2657. PMC 4003391Freely accessible. PMID 23749191. 
  66. ^ a b Zhan X, Pan S, Wang J, Dixon A, He J, Muller MG, et al. (May 2013). "Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle". Nature Genetics. 45 (5): 563–6. doi:10.1038/ng.2588. PMID 23525076. 
  67. ^ International Chicken Genome Sequencing Consortium. (December 2004). "Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution". Nature. 432 (7018): 695–716. Bibcode:2004Natur.432..695C. doi:10.1038/nature03154. PMID 15592404. 
  68. ^ Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg L, et al. (September 2010). "Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis". PLoS Biology. 8 (9): e10000475. doi:10.1371/journal.pbio.1000475. PMC 2935454Freely accessible. PMID 20838655. 
  69. ^ Jaiswal SK, Gupta A, Saxena R (5 May 2018). "Genome Sequence of Indian Peacock Reveals the Peculiar Case of a Glittering Bird". BioRxiv. doi:10.1101/315457. 
  70. ^ Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J (March 2014). "Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution". BMC Genomics. 15: 180. doi:10.1186/1471-2164-15-180. PMID 24602261. 
  71. ^ a b Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, et al. (November 2012). "The genomic landscape of species divergence in Ficedula flycatchers". Nature. 491 (7426): 756–60. Bibcode:2012Natur.491..756E. doi:10.1038/nature11584. PMID 23103876. 
  72. ^ Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, et al. (April 2010). "The genome of a songbird". Nature. 464 (7289): 757–62. Bibcode:2010Natur.464..757W. doi:10.1038/nature08819. PMC 3187626Freely accessible. PMID 20360741. 
  73. ^ a b Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, et al. (October 2017). "Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes". Genome Biology and Evolution. 9 (10): 2522–2545. doi:10.1093/gbe/evx158. PMID 28992302. 
  74. ^ a b c d Burga A, Wang W, Ben-David E, Wolf PC, Ramey AM, Verdugo C, Lyons K, Parker PG, Kruglyak L (June 2017). "A genetic signature of the evolution of loss of flight in the Galapagos cormorant". Science. 356 (6341): eaal3345. doi:10.1126/science.aal3345. PMID 28572335. 
  75. ^ Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. (May 2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–83. Bibcode:2008Natur.453..175W. doi:10.1038/nature06936. PMC 2803040Freely accessible. PMID 18464734. 
  76. ^ Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, et al. (May 2007). "Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences". Nature. 447 (7141): 167–77. Bibcode:2007Natur.447..167M. doi:10.1038/nature05805. PMID 17495919. 
  77. ^ Ensembl entry
  78. ^ Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, et al. (January 2018). "Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore". Nature Ecology & Evolution. 2 (1): 182–192. doi:10.1038/s41559-017-0417-y. PMID 29230027. 
  79. ^ Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, et al. (29 August 2011). "Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development". Genome Biol. 12 (8): R81. doi:10.1186/gb-2011-12-8-r81. PMC 3277949Freely accessible. PMID 21854559. 
  80. ^ Davey, M. (10 April 2013). "Australians crack the code of koala's genetic blueprint". The Age. Retrieved 25 June 2013. 
  81. ^ a b "Mammalian Genome Project". MIT. 
  82. ^ a b c d Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter S (2013). "Genome-wide signatures of convergent evolution in echolocating mammals". Nature. 502 (7470): 228–231. Bibcode:2013Natur.502..228P. doi:10.1038/nature12511. 
  83. ^ a b Lindblad-Toh K, Garber M, Zuk O, et al. (12 October 2011). "A high-resolution map of human evolutionary constraint using 29 mammals". Nature. 478 (7370): 476–482. Bibcode:2011Natur.478..476.. doi:10.1038/nature10530. PMC 3207357Freely accessible. PMID 21993624. 
  84. ^ Ensembl entry
  85. ^ Ensembl entry
  86. ^ Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, et al. (April 2007). "Evolutionary and biomedical insights from the rhesus macaque genome". Science. 316 (5822): 222–34. Bibcode:2007Sci...316..222.. doi:10.1126/science.1139247. PMID 17431167. 
  87. ^ a b Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, et al. (October 2011). "Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques". Nature Biotechnology. 29 (11): 1019–23. doi:10.1038/nbt.1992. PMID 22002653. 
  88. ^ Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, et al. (January 2011). "Comparative and demographic analysis of orang-utan genomes". Nature. 469 (7331): 529–33. Bibcode:2011Natur.469..529L. doi:10.1038/nature09687. PMC 3060778Freely accessible. PMID 21270892. 
  89. ^ Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, et al. (March 2012). "Insights into hominid evolution from the gorilla genome sequence". Nature. 483 (7388): 169–75. Bibcode:2012Natur.483..169S. doi:10.1038/nature10842. PMC 3303130Freely accessible. PMID 22398555. 
  90. ^ McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, et al. (February 2001). "A physical map of the human genome". Nature. 409 (6822): 934–41. doi:10.1038/35057157. PMID 11237014. 
  91. ^ Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. (February 2001). "The sequence of the human genome". Science. 291 (5507): 1304–51. Bibcode:2001Sci...291.1304V. doi:10.1126/science.1058040. PMID 11181995. 
  92. ^ "Psst, the human genome was never completely sequenced". STAT. 2017-06-20. Retrieved 2017-10-23. 
  93. ^ Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. (May 2010). "A draft sequence of the Neandertal genome". Science. 328 (5979): 710–722. Bibcode:2010Sci...328..710G. doi:10.1126/science.1188021. PMC 5100745Freely accessible. PMID 20448178. 
  94. ^ Chimpanzee Sequencing and Analysis Consortium. (September 2005). "Initial sequence of the chimpanzee genome and comparison with the human genome". Nature. 437 (7055): 69–87. Bibcode:2005Natur.437...69.. doi:10.1038/nature04072. PMID 16136131. 
  95. ^ Prufer K, Much K, Hellmann I, et al. (2012). "The bonobo genome compared with the chimpanzee and human genomes". Nature. 486 (7404). Bibcode:2012Natur.486..527P. doi:10.1038/nature11128. PMC 3498939Freely accessible. PMID 22722832. 
  96. ^ Ensembl entry
  97. ^ Worley KC, Warren WC, Rogers J, Locke D, Muzny DM, Mardis ER, et al. (Marmoset Genome Sequencing and Analysis Consortium) (August 2014). "The common marmoset genome provides insight into primate biology and evolution". Nature Genetics. 46 (8): 850–7. doi:10.1038/ng.3042. PMC 4138798Freely accessible. PMID 25038751. 
  98. ^ Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S, Clamp M, et al. (November 2007). "Initial sequence and comparative analysis of the cat genome". Genome Research. 17 (11): 1675–89. doi:10.1101/gr.6380007. PMC 2045150Freely accessible. PMID 17975172. 
  99. ^ a b c d Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, et al. (2013). "The tiger genome and comparative analysis with lion and snow leopard genomes". Nature Communications. 4: 2433. doi:10.1038/ncomms3433. PMC 3778509Freely accessible. PMID 24045858. 
  100. ^ Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–19. Bibcode:2005Natur.438..803L. doi:10.1038/nature04338. PMID 16341006. 
  101. ^ Gopalakrishnan S, Samaniego Castruita JA, Sinding MS, Kuderna LF, Räikkönen J, Petersen B, et al. (June 2017). "The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics". BMC Genomics. 18 (1): 495. doi:10.1186/s12864-017-3883-3. PMID 28662691. 
  102. ^ Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. (January 2010). "The sequence and de novo assembly of the giant panda genome". Nature. 463 (7279): 311–7. Bibcode:2010Natur.463..311L. doi:10.1038/nature08696. PMC 3951497Freely accessible. PMID 20010809. 
  103. ^ a b c Foote AD, Liu Y, Thomas GW, Vinař T, Alföldi J, Deng J, et al. (March 2015). "Convergent evolution of the genomes of marine mammals". Nature Genetics. 47 (3): 272–5. doi:10.1038/ng.3198. PMID 25621460. 
  104. ^ a b c Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, Cha SS, et al. (January 2014). "Minke whale genome and aquatic adaptation in cetaceans". Nature Genetics. 46 (1): 88–92. doi:10.1038/ng.2835. PMID 24270359. 
  105. ^ Ip S (12 December 2017). "Beluga whale genome sequenced for the first time in Vancouver". Vancouver Sun. 
  106. ^ Dastjerdi A, Robert C, Watson M (2014). "Low coverage sequencing of two Asian elephant (Elephas maximus) genomes". GigaScience. 3: 12. doi:10.1186/2047-217X-3-12. PMC 4106201Freely accessible. PMID 25053995. 
  107. ^ UCSC browser entry
  108. ^ Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, et al. (November 2009). "Genome sequence, comparative analysis, and population genetics of the domestic horse". Science. 326 (5954): 865–7. Bibcode:2009Sci...326..865W. doi:10.1126/science.1178158. PMID 19892987. 
  109. ^ Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. (November 2012). "Analyses of pig genomes provide insight into porcine demography and evolution". Nature. 491 (7424): 393–8. Bibcode:2012Natur.491..393G. doi:10.1038/nature11622. PMC 3566564Freely accessible. PMID 23151582. 
  110. ^ Dong J, Hu Z, Wu C, Guo H, Zhou B, Lv J, et al. (July 2012). "Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population". Nature Genetics. 44 (8): 895–9. doi:10.1038/ng.2351. PMID 22797725. 
  111. ^ Canavez FC, Luche DD, Stothard P, Leite KR, Sousa-Canavez JM, Plastow G, et al. (2012). "Genome sequence and assembly of Bos indicus". The Journal of Heredity. 103 (3): 342–8. doi:10.1093/jhered/esr153. PMID 22315242. 
  112. ^ The Bovine Genome Sequencing and Analysis Consortium (2009). "The genome sequence of taurine cattle: a window to ruminant biology and evolution". Science. 324 (5926): 522–528. Bibcode:2009Sci...324..522A. doi:10.1126/science.1169588. PMC 2943200Freely accessible. PMID 19390049. 
  113. ^ Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. (December 2002). "Initial sequencing and comparative analysis of the mouse genome". Nature. 420 (6915): 520–62. Bibcode:2002Natur.420..520W. doi:10.1038/nature01262. PMID 12466850. 
  114. ^ Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. (April 2004). "Genome sequence of the Brown Norway rat yields insights into mammalian evolution". Nature. 428 (6982): 493–521. Bibcode:2004Natur.428..493G. doi:10.1038/nature02426. PMID 15057822. 
  115. ^ Ensembl entry
  116. ^ Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. (March 2013). "Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest". Genome Biology. 14 (3): R27. doi:10.1186/gb-2013-14-3-r27. PMC 4053930Freely accessible. PMID 23537049. 
  117. ^ Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, et al. (April 2008). "The genome of the model beetle and pest Tribolium castaneum". Nature. 452 (7190): 949–55. Bibcode:2008Natur.452..949R. doi:10.1038/nature06784. PMID 18362917. 
  118. ^ Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. (June 2007). "Genome sequence of Aedes aegypti, a major arbovirus vector". Science. 316 (5832): 1718–23. Bibcode:2007Sci...316.1718N. doi:10.1126/science.1138878. PMC 2868357Freely accessible. PMID 17510324. 
  119. ^ Chen XG, Jiang X, Gu J, Xu M, Wu Y, Deng Y, et al. (November 2015). "Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution". Proceedings of the National Academy of Sciences of the United States of America. 112 (44): E5907–15. doi:10.1073/pnas.1516410112. PMC 4640774Freely accessible. PMID 26483478. 
  120. ^ Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. (October 2002). "The genome sequence of the malaria mosquito Anopheles gambiae". Science. 298 (5591): 129–49. Bibcode:2002Sci...298..129H. doi:10.1126/science.1076181. PMID 12364791. H
  121. ^ a b Lawniczak MK, Emrich SJ, Holloway AK, Regier AP, Olson M, White B, et al. (October 2010). "Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences". Science. 330 (6003): 512–4. Bibcode:2010Sci...330..512L. doi:10.1126/science.1195755. PMC 3674514Freely accessible. PMID 20966253. 
  122. ^ Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, et al. (January 2014). "Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites". BMC Genomics. 15 (1): 42. doi:10.1186/1471-2164-15-42. PMC 3901762Freely accessible. PMID 24438588. 
  123. ^ a b c d e f g h i j k l m n o Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. (January 2015). "Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes". Science. 347 (6217): 1258522. doi:10.1126/science.1258522. PMC 4380271Freely accessible. PMID 25554792. 
  124. ^ a b Jiménez-Guri E, Huerta-Cepas J, Cozzuto L, Wotton KR, Kang H, Himmelbauer H, et al. (February 2013). "Comparative transcriptomics of early dipteran development". BMC Genomics. 14: 123. doi:10.1186/1471-2164-14-123. PMC 3616871Freely accessible. PMID 23432914. 
  125. ^ Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, et al. (October 2010). "Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics". Science. 330 (6000): 86–8. Bibcode:2010Sci...330...86A. doi:10.1126/science.1191864. PMC 3740384Freely accessible. PMID 20929810. 
  126. ^ Zhou Q, Zhu HM, Huang QF, Zhao L, Zhang GJ, Roy SW, et al. (March 2012). "Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans". BMC Genomics. 13: 109. doi:10.1186/1471-2164-13-109. PMC 3353239Freely accessible. PMID 22439699. 
  127. ^ a b c d e f g h i j Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, et al. (November 2007). "Evolution of genes and genomes on the Drosophila phylogeny". Nature. 450 (7167): 203–18. Bibcode:2007Natur.450..203C. doi:10.1038/nature06341. PMID 17994087. 
  128. ^ a b c d e f g h "Drosophila modENCODE Project BCM-HGSC". Baylor College of Medicine, Human Genome Sequencing Center. 
  129. ^ Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. (March 2000). "The genome sequence of Drosophila melanogaster". Science. 287 (5461): 2185–95. Bibcode:2000Sci...287.2185.. doi:10.1126/science.287.5461.2185. PMID 10731132. 
  130. ^ Hamilton PT, Leong JS, Koop BF, Perlman SJ (2014). "Transcriptional responses in a Drosophila defensive symbiosis". Mol. Ecol. 23: 1558–70. doi:10.1111/mec.12603. PMID 24274471. 
  131. ^ Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, et al. (January 2005). "Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution". Genome Research. 15 (1): 1–18. doi:10.1101/gr.3059305. PMC 540289Freely accessible. PMID 15632085. 
  132. ^ "The Drosophila santomea genome - release 1.0". Andolfatto Lab. Princeton University. 
  133. ^ Lemke S, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U (May 2011). "BMP signaling components in embryonic transcriptomes of the hover fly Episyrphus balteatus (Syrphidae)". BMC Genomics. 12: 278. doi:10.1186/1471-2164-12-278. PMC 3224130Freely accessible. PMID 21627820. 
  134. ^ "Genome sequence of the pea aphid Acyrthosiphon pisum". PLoS Biology. 8 (2): e1000313. February 2010. doi:10.1371/journal.pbio.1000313. PMC 2826372Freely accessible. PMID 20186266. 
  135. ^ Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, et al. (December 2015). "Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection". Proceedings of the National Academy of Sciences of the United States of America. 112 (48): 14936–41. doi:10.1073/pnas.1506226112. PMC 4672799Freely accessible. PMID 26627243. 
  136. ^ Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y, Hu H, et al. (August 2011). "The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming". Genome Research. 21 (8): 1339–48. doi:10.1101/gr.121392.111. PMC 3149500Freely accessible. PMID 21719571. 
  137. ^ Honeybee Genome Sequencing Consortium (October 2006). "Insights into social insects from the genome of the honeybee Apis mellifera". Nature. 443 (7114): 931–49. Bibcode:2006Natur.443..931T. doi:10.1038/nature05260. PMC 2048586Freely accessible. PMID 17073008. 
  138. ^ Suen G, Teiling C, Li L, et al. (2011). Copenhaver G, ed. "The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle". PLOS Genetics. 7 (2): e1002007. doi:10.1371/journal.pgen.1002007. PMC 3037820Freely accessible. PMID 21347285. 
  139. ^ a b Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, et al. (August 2010). "Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator". Science. 329 (5995): 1068–71. Bibcode:2010Sci...329.1068B. doi:10.1126/science.1192428. PMID 20798317. 
  140. ^ Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C, Hu H, Zhang G, Kronauer DJ (February 2014). "The genome of the clonal raider ant Cerapachys biroi". Current Biology. 24 (4): 451–8. doi:10.1016/j.cub.2014.01.018. PMC 3961065Freely accessible. PMID 24508170. 
  141. ^ Konorov EA, Nikitin MA, Mikhailov KV, Lysenkov SN, Belenky M, Chang PL, Nuzhdin SV, Scobeyeva VA (February 2017). "Genomic exaptation enables Lasius niger adaptation to urban environments". BMC Evolutionary Biology. 17 (Suppl 1): 39. doi:10.1186/s12862-016-0867-x. PMID 28251870. 
  142. ^ Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, et al. (April 2011). "Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5673–8. Bibcode:2011PNAS..108.5673S. doi:10.1073/pnas.1008617108. PMC 3078359Freely accessible. PMID 21282631. 
  143. ^ a b c Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, et al. (January 2010). "Functional and evolutionary insights from the genomes of three parasitoid Nasonia species". Science. 327 (5963): 343–8. Bibcode:2010Sci...327..343.. doi:10.1126/science.1178028. PMC 2849982Freely accessible. PMID 20075255. 
  144. ^ Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A, Yandell M, et al. (April 2011). "Draft genome of the red harvester ant Pogonomyrmex barbatus". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5667–72. Bibcode:2011PNAS..108.5667S. doi:10.1073/pnas.1007901108. PMC 3078412Freely accessible. PMID 21282651. 
  145. ^ Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, et al. (April 2011). "The genome of the fire ant Solenopsis invicta". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5679–84. Bibcode:2011PNAS..108.5679W. doi:10.1073/pnas.1009690108. PMC 3078418Freely accessible. PMID 21282665. 
  146. ^ Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T (February 2004). "The genome sequence of silkworm, Bombyx mori". DNA Research. 11 (1): 27–35. doi:10.1093/dnares/11.1.27. PMID 15141943. 
  147. ^ Zhan S, Merlin C, Boore JL, Reppert SM (November 2011). "The monarch butterfly genome yields insights into long-distance migration". Cell. 147 (5): 1171–85. doi:10.1016/j.cell.2011.09.052. PMC 3225893Freely accessible. PMID 22118469. 
  148. ^ You M, Yue Z, He W, Yang X, Yang G, Xie M, et al. (February 2013). "A heterozygous moth genome provides insights into herbivory and detoxification". Nature Genetics. 45 (2): 220–5. doi:10.1038/ng.2524. PMID 23313953. 
  149. ^ Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, et al. (July 2010). "Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle". Proceedings of the National Academy of Sciences of the United States of America. 107 (27): 12168–73. Bibcode:2010PNAS..10712168K. doi:10.1073/pnas.1003379107. PMC 2901460Freely accessible. PMID 20566863. 
  150. ^ "The Daphnia Genomics Consortium". Archived from the original on 9 January 2010. 
  151. ^ "Daphnia pulex v1.0". DOE Joint Genome Institute. Retrieved 2009-11-29. 
  152. ^ Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. (February 2011). "The ecoresponsive genome of Daphnia pulex". Science. 331 (6017): 555–61. Bibcode:2011Sci...331..555C. doi:10.1126/science.1197761. PMC 3529199Freely accessible. PMID 21292972. 
  153. ^ Kenny NJ, Sin YW, Shen X, Zhe Q, Wang W, Chan TF, et al. (March 2014). "Genomic sequence and experimental tractability of a new decapod shrimp model, Neocaridina denticulata". Marine Drugs. 12 (3): 1419–37. doi:10.3390/md12031419. PMC 3967219Freely accessible. PMID 24619275. 
  154. ^ Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, et al. (November 2016). "Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion". eLife. 5: e20062. doi:10.7554/eLife.20062. PMID 27849518. 
  155. ^ Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, Lyko F (March 2018). "Clonal genome evolution and rapid invasive spread of the marbled crayfish". Nature Ecology & Evolution. 2 (3): 567–573. doi:10.1038/s41559-018-0467-9. PMID 29403072. 
  156. ^ NCBI accession entry
  157. ^ Nossa CW, Havlak P, Yue JX, Lv J, Vincent KY, Brockmann HJ, et al. (2014). "Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication". GigaScience. 3: 9. doi:10.1186/2047-217X-3-9. PMC 4066314Freely accessible. PMID 24987520. 
  158. ^ Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, et al. (November 2011). "The genome of Tetranychus urticae reveals herbivorous pest adaptations". Nature. 479 (7374): 487–92. Bibcode:2011Natur.479..487G. doi:10.1038/nature10640. PMC 4856440Freely accessible. PMID 22113690. 
  159. ^ Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, et al. (2013). "The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods". Nature Communications. 4: 2602. doi:10.1038/ncomms3602. PMC 3826648Freely accessible. PMID 24129506. 
  160. ^ a b Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, et al. (May 2014). "Spider genomes provide insight into composition and evolution of venom and silk". Nature Communications. 5: 3765. doi:10.1038/ncomms4765. PMC 4273655Freely accessible. PMID 24801114. 
  161. ^ Chipman AD, Ferrier DE, Brena C, Qu J, Hughes DS, Schröder R, et al. (November 2014). "The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima". PLoS Biology. 12 (11): e1002005. doi:10.1371/journal.pbio.1002005. PMC 4244043Freely accessible. PMID 25423365. 
  162. ^ Boothby TC, Tenlen JR, Smith FW, Wang JR, Patanella KA, Nishimura EO, et al. (December 2015). "Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade". Proceedings of the National Academy of Sciences of the United States of America. 112 (52): 15976–81. doi:10.1073/pnas.1510461112. PMC 4702960Freely accessible. PMID 26598659. 
  163. ^ Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker A, Blaxter M (2015). "The genome of the tardigrade Hypsibius dujardini". bioRxiv 033464Freely accessible. 
  164. ^ Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. (October 2012). "The oyster genome reveals stress adaptation and complexity of shell formation". Nature. 490 (7418): 49–54. Bibcode:2012Natur.490...49Z. doi:10.1038/nature11413. PMID 22992520. 
  165. ^ a b c Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. (January 2013). "Insights into bilaterian evolution from three spiralian genomes". Nature. 493 (7433): 526–31. Bibcode:2013Natur.493..526S. doi:10.1038/nature11696. PMC 4085046Freely accessible. PMID 23254933. 
  166. ^ Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. (August 2015). "The octopus genome and the evolution of cephalopod neural and morphological novelties". Nature. 524 (7564): 220–4. doi:10.1038/nature14668. PMC 4795812Freely accessible. PMID 26268193. 
  167. ^ Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, et al. (May 2017). "Whole genome analysis of a schistosomiasis-transmitting freshwater snail". Nature Communications. 8: 15451. doi:10.1038/ncomms15451. PMC 5440852Freely accessible. PMID 28508897. 
  168. ^ Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, et al. (October 2011). "The draft genome of the carcinogenic human liver fluke Clonorchis sinensis". Genome Biology. 12 (10): R107. doi:10.1186/gb-2011-12-10-r107. PMID 22023798. 
  169. ^ a b c d Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sánchez-Flores A, Brooks KL, et al. (April 2013). "The genomes of four tapeworm species reveal adaptations to parasitism". Nature. 496 (7443): 57–63. Bibcode:2013Natur.496...57.. doi:10.1038/nature12031. PMC 3964345Freely accessible. PMID 23485966. 
  170. ^ Zheng H, Zhang W, Zhang L, Zhang Z, Li J, Lu G, et al. (October 2013). "The genome of the hydatid tapeworm Echinococcus granulosus". Nature Genetics. 45 (10): 1168–75. doi:10.1038/ng.2757. PMID 24013640. 
  171. ^ Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. (January 2012). "Whole-genome sequence of Schistosoma haematobium". Nature Genetics. 44 (2): 221–5. doi:10.1038/ng.1065. PMID 22246508. 
  172. ^ The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (July 2009). "The Schistosoma japonicum genome reveals features of host-parasite interplay". Nature. 460 (7253): 345–51. Bibcode:2009Natur.460..345Z. doi:10.1038/nature08140. PMC 3747554Freely accessible. PMID 19606140. 
  173. ^ Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. (July 2009). "The genome of the blood fluke Schistosoma mansoni". Nature. 460 (7253): 352–8. Bibcode:2009Natur.460..352B. doi:10.1038/nature08160. PMC 2756445Freely accessible. PMID 19606141. 
  174. ^ Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al. (January 2012). "A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni". PLoS Neglected Tropical Diseases. 6 (1): e1455. doi:10.1371/journal.pntd.0001455. PMC 3254664Freely accessible. PMID 22253936. 
  175. ^ "Project". 
  176. ^ "SmedGD". 
  177. ^ Schwarz EM, Hu Y, Antoshechkin I, Miller MM, Sternberg PW, Aroian RV (April 2015). "The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families". Nature Genetics. 47 (4): 416–22. doi:10.1038/ng.3237. PMC 4617383Freely accessible. PMID 25730766. 
  178. ^ Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, et al. (October 2011). "Ascaris suum draft genome". Nature. 479 (7374): 529–33. Bibcode:2011Natur.479..529J. doi:10.1038/nature10553. PMID 22031327. 
  179. ^ Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, et al. (September 2007). "Draft genome of the filarial nematode parasite Brugia malayi". Science. 317 (5845): 1756–60. Bibcode:2007Sci...317.1756G. doi:10.1126/science.1145406. PMC 2613796Freely accessible. PMID 17885136. 
  180. ^ Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, et al. (September 2011). "Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus". PLoS Pathogens. 7 (9): e1002219. doi:10.1371/journal.ppat.1002219. PMC 3164644Freely accessible. PMID 21909270. 
  181. ^ Mortazavi A, Schwarz EM, Williams B, Schaeffer L, Antoshechkin I, Wold BJ, et al. (December 2010). "Scaffolding a Caenorhabditis nematode genome with RNA-seq". Genome Research. 20 (12): 1740–7. doi:10.1101/gr.111021.110. PMC 2990000Freely accessible. PMID 20980554. 
  182. ^ "GSC: Caenorhabditis n. sp. PB2801". Archived from the original on 18 August 2007. Retrieved 28 April 2007. 
  183. ^ "Wormbase". Retrieved 4 September 2015. 
  184. ^ Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, et al. (November 2003). "The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics". PLoS Biology. 1 (2): E45. doi:10.1371/journal.pbio.0000045. PMC 261899Freely accessible. PMID 14624247. 
  185. ^ C. elegans Sequencing Consortium. (December 1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology". Science. 282 (5396): 2012–8. doi:10.1126/science.282.5396.2012. PMID 9851916. 
  186. ^ "GSC: Caenorhabditis remanei". Archived from the original on 13 March 2007. Retrieved 28 April 2007. 
  187. ^ Haag ES, Chamberlin H, Coghlan A, Fitch DH, Peters AD, Schulenburg H (March 2007). "Caenorhabditis evolution: if they all look alike, you aren't looking hard enough" (PDF). Trends in Genetics. 23 (3): 101–4. doi:10.1016/j.tig.2007.01.002. PMID 17275130. 
  188. ^ Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, et al. (November 2012). "The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets". FASEB Journal. 26 (11): 4650–61. doi:10.1096/fj.12-205096. PMC 3475251Freely accessible. PMID 22889830. 
  189. ^ Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, et al. (March 2014). "The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode". Genome Biology. 15 (3): R43. doi:10.1186/gb-2014-15-3-r43. PMC 4054857Freely accessible. PMID 24580726. 
  190. ^ Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, et al. (August 2013). "The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery". Genome Biology. 14 (8): R88. doi:10.1186/gb-2013-14-8-r88. PMC 4054779Freely accessible. PMID 23985316. 
  191. ^ Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, et al. (18 July 2013). "A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora". PloS One. 8 (7): e69618. doi:10.1371/journal.pone.0069618. PMC 3715494Freely accessible. PMID 23874975. 
  192. ^ Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, et al. (May 2013). "Genomics of Loa loa, a Wolbachia-free filarial parasite of humans". Nature Genetics. 45 (5): 495–500. doi:10.1038/ng.2585. PMC 4238225Freely accessible. PMID 23525074. 
  193. ^ Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, et al. (September 2008). "Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism". Proceedings of the National Academy of Sciences of the United States of America. 105 (39): 14802–7. Bibcode:2008PNAS..10514802O. doi:10.1073/pnas.0805946105. PMC 2547418Freely accessible. PMID 18809916. 
  194. ^ Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, et al. (August 2008). "Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita". Nature Biotechnology. 26 (8): 909–15. doi:10.1038/nbt.1482. PMID 18660804. 
  195. ^ Tang YT, Gao X, Rosa BA, Abubucker S, Hallsworth-Pepin K, Martin J, et al. (March 2014). "Genome of the human hookworm Necator americanus". Nature Genetics. 46 (3): 261–269. doi:10.1038/ng.2875. PMC 3978129Freely accessible. PMID 24441737. 
  196. ^ a b "Filarial worms Database". Retrieved 5 June 2015. 
  197. ^ Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, et al. (October 2008). "The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism". Nature Genetics. 40 (10): 1193–8. doi:10.1038/ng.227. PMID 18806794. 
  198. ^ Schiffer PH, Kroiher M, Kraus C, Koutsovoulos GD, Kumar S, Camps JI, et al. (December 2013). "The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda". BMC Genomics. 14 (1): 923. doi:10.1186/1471-2164-14-923. PMC 3890508Freely accessible. PMID 24373391. 
  199. ^ Jex AR, Nejsum P, Schwarz EM, Hu L, Young ND, Hall RS, et al. (July 2014). "Genome and transcriptome of the porcine whipworm Trichuris suis". Nature Genetics. 46 (7): 701–6. doi:10.1038/ng.3012. PMC 4105696Freely accessible. PMID 24929829. 
  200. ^ a b Foth BJ, Tsai IJ, Reid AJ, Bancroft AJ, Nichol S, Tracey A, et al. (July 2014). "Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction". Nature Genetics. 46 (7): 693–700. doi:10.1038/ng.3010. PMC 5012510Freely accessible. PMID 24929830. 
  201. ^ "JGI: Capitella teleta". 
  202. ^ "JGI: Helobdella robusta". 
  203. ^ "WhitneyLab: Eisenia fetida". 
  204. ^ Zwarycz AS, Nossa CW, Putnam NH, Ryan JF (2016). "Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm Eisenia fetida". Genome Biol Evol. 8 (1): 271–81. doi:10.1093/gbe/evv243. PMC 4758240Freely accessible. PMID 26659921. 
  205. ^ Luo YJ, Takeuchi T, Koyanagi R, Yamada L, Kanda M, Khalturina M, et al. (September 2015). "The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization". Nature Communications. 6: 8301. doi:10.1038/ncomms9301. PMC 4595640Freely accessible. PMID 26383154. 
  206. ^ Flot JF, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EG, et al. (August 2013). "Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga". Nature. 500 (7463): 453–7. doi:10.1038/nature12326. PMID 23873043.