List of sequenced plant genomes

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

This list of sequenced plant genomes contains plant species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle only sequences. For all kingdoms, see the list of sequenced genomes.

Algae[edit]

Unicellular photosynthetic eukaryotes. For a more complete list, see the List of Sequenced Algae genomes

Organism strain Clade Relevance Genome size Number of genes predicted Organization Year of completion Assembly status Links
Aureococcus anophagefferens Heterokont Harmful Algal Bloom 50.1 Mb 11,522 Joint Genome Institute 2011[1] The Greenhouse[2]
Auxenochlorella protothecoides Green Algae Biofuels 22.9 Mb 7,039 Tsinghua University 2014[3] The Greenhouse [2]
Bathycoccus prasinos RCC1105 Green algae Comparative analysis 15 Mb Joint Genome Institute 2012[4]
Bigelowiella natans SAR (Rhizaria) 91.4 Mb 21,708 Dalhousie University 2012[5] The Greenhouse[2]
Chlamydomonas reinhardtii CC-503 cw92 mt+ Green algae Model organism 111 Mb 17,737 University of California at Los Angeles[6] 2007 "Chlamydomonas reinhardtii". National Center for Biotechnology Information (NCBI).  ENA GCA_000002595
Chlorella sorokiniana str. 1228 Green Algae Biofuels 61.4 Mb Los Alamos National Lab 2018[7] The Greenhouse[2]
Chlorella sorokiniana UTEX 1230 Green Algae Biofuels 58.5 Mb Los Alamos National Lab 2018[8] The Greenhouse[2]
Chlorella sorokiniana DOE1412 Green Algae Biofuels 57.8 Mb Los Alamos National Lab 2018[9] The Greenhouse[2]
Chlorella variabilis NC64A Green algae 2010[10]
Chlorella vulgaris Green Algae Biofuels 37.3 Mb Nagoya University 1997[11] The Greenhouse[2]
Chondrus crispus Red algae (Rhodophyte) 105 Mb 9,606 Genoscope/Station Biologique de Roscoff 2013[12]
Chrysochromulina parva Haptophyte Biofuels 65.8 Mb Los Alamos National Lab 2018[13] The Greenhouse[2]
Chrysochromulina tobinii Haptophyte Model Organism, Biofuels 59 Mb 16,777 Los Alamos National Lab 2015[14] The Greenhouse[2]
Coccomyxa subellipsoidea sp. C-169 Green algae Model biofuel Joint Genome Institute 2007[15]
Cyanidioschyzon merolae Strain:10D Red algae (Rhodophyte) Photo-autotrophic 16.73 Mb 5,017 2004,[16] 2007[17]
Cyanophora paradoxa Glaucophyte Rutgers University[18] 2012[18]
Dunaliella salina CCAP19/18 Green algae Halophilic, biofuel and beta-carotene production 343.7 Mb 16,697 Joint Genome Institute 2017[19][20] Dunaliella Salina Genome Portal. Phytozome
Ectocarpus siliculosus Brown algae (Heterokontophyta) distantly related to plants Station Biologique de Roscoff 2010[21]
Emiliania huxleyi Haptophyte Marine phytoplankton 167.7 Mb 39,126 Joint Genome Institute 2013[22] The Greenhouse[2]
Galdieria sulphuraria Red algae (Rhodophyte) Thermo-acidophilic (extremophile) 13.7 Mb 6,623 2005[23] 2005[24] 2013[25]
Guillardia theta Cryptomonad Eukaryote Endosymbiosis 87.1 Mb Dalhousie University 2012[26] The Greenhouse[2]
Micromonas pusilla CCMP1545 Green algae Marine phytoplankton Joint Genome Institute 2007[27][28]
Micromonas pusilla RCC299/NOUM17 Green algae Marine phytoplankton Joint Genome Institute 2007[28][29]
Monoraphidium neglectum Green Algae Biofuels 69.7 Mb Joint Genome Institute 2017[30] The Greenhouse[2]
Nannochloropsis gaditana SAR (Heterokont) Biofuels 34.0 Mb Colorado School of Mines 2012[31] The Greenhouse[2]
Nannochloropsis oceanica SAR (Heterokont) Biofuels 31.5 Mb Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology 2016[32] The Greenhouse[2]
Nannochloropsis Salina CCMP1776 SAR (Heterokont) Biofuels, Feedstock 24.4 Mb Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology 2016[33] The Greenhouse[2]
Ostreococcus lucimarinus CCE9901 Green algae Simple eukaryote, small genome 13.2 Mb 7,796 2007[34]
Ostreococcus tauri OTH95 Green algae Simple eukaryote, small genome 2006[35]
Ostreococcus sp. RCC809 Green algae 7,773 Joint Genome Institute 2008[36]
Phaeodactylum tricornutum SAR (Heterokont) 27.4 Mb 10,402 Diatom Consortium 2008[37] The Greenhouse[2]
Picochlorum soloecismus DOE101 Green algae Biofuels 15.3 Mb Los Alamos National Lab 2017[38] The Greenhouse[2]
Picochlorum sp. Green algae Biofuels 13.3 Mb 7,367 Rutgers University 2014[39] The Greenhouse[2]
Porphyridium purpureum Red algae (Rhodophyte) 19.7 Mb 8,355 2013[40]
Pyropia yezoensis Red algae (Rhodophyte) 43 Mb 10,327 2013[41]
Saccharina japonica SAR (Heterokont) Brown Algae Crop 543.4 Mb Chinese Academy of Sciences, Beijing Institutes of Life Science 2015[42] The Greenhouse[2]
Scenedesmus obliquus strain DOE0152Z Green Algae Biofuels 210.3 Mb Brooklyn College 2017[43] The Greenhouse[2]
Tetraselmis sp. Green Algae Biofuels 228 Mb Los Alamos National Lab 2018[2] The Greenhouse[2]
Thalassiosira oceanica CCMP1005 SAR (Heterokont) model organism 92.2 Mb 34,642 The Future Ocean 2012[44]
Thalassiosira pseudonana SAR (Heterokont) 32.4 Mb Diatom Consortium 2009[45] The Greenhouse[2]
Volvox carteri Green algae Multicellular alga, model organism ~131.2 Mb 14,971 2010[46]

Bryophytes[edit]

Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Physcomitrella patens ssp. patens str. Gransden 2004 Bryophytes Early diverging land plant 2008[47]

Higher plants (vascular plants)[edit]

Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Selaginella moellendorffii Lycopodiophyta Model organism 2011[48][49]

Angiosperms[edit]

Amborellales[edit]

Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Amborella trichopoda Amborellaceae Basal angiosperm 2013[50][51]

Eudicots[edit]

Ranunculales[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Aquilegia coerulea Ranunculaceae Basal eudicot Unpublished[52]
Proteales[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Nelumbo nucifera Nelumbonaceae Basal eudicot 2013[53]
Caryophyllales[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Beta vulgaris (sugar beet) Chenopodiaceae Crop plant 714–758 Mbp 27,421 2013[54]
Chenopodium quinoa Chenopodiaceae Crop plant 1.39–1.50 Gb 44,776 2017[55] 3,486 scaffolds, scaffold N50 of 3.84 Mb, 90% of the assembled genome is contained in 439 scaffolds[55]
Amaranthus hypocondriacus Amaranthaceae Crop plant 403.9 Mb 23,847 2016[56] 16 large scaffolds from 16.9 to 38.1 Mb. N50 and L50 of the assembly was 24.4 Mb and 7, respectively.[57]
Rosids[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Betula nana (dwarf birch) Betulaceae Arctic shrub 450 Mbp QMUL/SBCS 2013[58]
Aethionema arabicum Brassicaceae Comparative analysis of crucifer genomes 2013[59]
Arabidopsis lyrata Brassicaceae model plant 2011[60]
Arabidopsis thaliana Ecotype:Columbia Brassicaceae Model plant 135 Mbp 2000[61]
Barbarea vulgaris

G-type

Brassicaceae Model plant for specialised metabolites and plant defenses 2017[62]
Brassica rapa (Chinese cabbage) Brassicaceae Assorted crops and model organism 2011[63]
Capsella rubella Brassicaceae Close relative of Arabidopsis thaliana 130Mbp 26,521 JGI 2013?[64] 2013[65]
Eutrema salsugineum Brassicaceae A relative of arabidopsis with high salt tolerance 240Mbp 26,351 JGI 2013[66]
Eutrema parvulum Brassicaceae Comparative analysis of crucifer genomes 2013[59]
Leavenworthia alabamica Brassicaceae Comparative analysis of crucifer genomes 2013[59]
Sisymbrium irio Brassicaceae Comparative analysis of crucifer genomes 2013[59]
Thellungiella parvula Brassicaceae A relative of arabidopsis with high salt tolerance 2011[67]
Cannabis sativa (hemp) Cannabaceae Hemp and marijuana production ca 820Mbp 30,074 based on transcriptome assembly and clustering 2011[68] Illumina/454

scaffold N50 16.2 Kbp

Carica papaya (papaya) Caricaceae Fruit crop 372Mbp 28,629 2008[69] contig N50 11kbp

scaffold N50

1Mbp

total coverage ~3x (Sanger)

92.1% unigenes mapped

235Mbp anchored (of this 161Mbp also oriented)

Kalanchoe Crassulaceae 2013?[70]
Citrullus lanatus (watermelon) Cucurbitaceae Vegetable crop ca 425Mbp 23,440 BGI 2012[71] Illumina

coverage 108.6x

contig N50 26.38 kbp

Scaffold N50 2.38 Mbp

genome covered 83.2%

~97% ESTs mapped

Cucumis melo (Muskmelon) DHL92 Cucurbitaceae Vegetable crop 450Mbp 27,427 2012[72] 454

13.5x coverage

contig N50: 18.1kbp

scaffold N50: 4.677 Mbp

WGS

Cucumis sativus (cucumber) 'Chinese long' inbred line 9930 Cucurbitaceae Vegetable crop 350 Mbp (Kmer depth) 367 Mbp (flow cytometry) 26,682 2009[73] contig N50 19.8kbp

scaffold N50 1,140kbp

total coverage ~72.2 (Sanger + Ilumina)

96.8% unigenes mapped

72.8% of the genome anchored

Hevea brasiliensis (rubber tree) Euphorbiaceae the most economically important member of the genus Hevea 2013[74]
Jatropha curcas Palawan Euphorbiaceae bio-diesel crop 2011[75]
Manihot esculenta (Cassava) Euphorbiaceae Humanitarian importance ~760Mb 30,666 JGI 2012[76]
Ricinus communis (Castor bean) Euphorbiaceae Oilseed crop 320Mbp 31,237 JCVI 2010[77] Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp
Cajanus cajan (Pigeon pea) var. Asha Fabaceae Model legume 2012[78][79]
Arachis duranensis (A genome diploid wild peanut) accession V14167 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop 2016[80] Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp
Arachis ipaensis (B genome diploid wild peanut) accession K30076 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop 2016[80] Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp
Cicer arietinum (chickpea) Fabaceae filling 2013[81]
Cicer arietinum L. (chickpea) Fabaceae 2013[82]
Glycine max (soybean) var. Williams 82 Fabaceae Protein and oil crop 1115Mbp 46,430 2010[83] Contig N50:189.4kbp

Scaffold N50:47.8Mbp

Sanger coverage ~8x

WGS

955.1 Mbp assembled

Lotus japonicus (Bird's-foot Trefoil) Fabaceae Model legume 2008[84]
Medicago truncatula (Barrel Medic) Fabaceae Model legume 2011[85]
Phaseolus vulgaris (common bean) Fabaceae Model bean 520Mbp 31,638 JGI 2013?[86]
Linum usitatissimum (flax) Linaceae Crop ~350Mbp 43,384 BGI et al. 2012[87]
Durio zibethinus (Durian) Malvaceae Tropical fruit tree ~738Mbp 2017[88]
Gossypium raimondii Malvaceae One of the putative progenitor species of tetraploid cotton 2013?[89]
Theobroma cacao (cocoa tree) Malvaceae Flavouring crop 2010[90][91]
Theobroma cacao (cocoa tree) cv. Matina 1-6 Malvaceae Most widely cultivated cacao type 2013[92]
Azadirachta indica (neem) Meliaceae Source of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine 364 Mbp ~20000 GANIT Labs 2012[93] and 2011[94] Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed
Eucalyptus grandis (Rose gum) Myrtaceae Fibre and timber crop 2011[95]
Fragaria vesca (wild strawberry) Rosaceae Fruit crop 240Mbp 34,809 2011[96] scaffold N50: 1.3 Mbp

454/Illumina/solid

39x coverage

WGS

Malus domestica (apple) "Golden Delicious" Rosaceae Fruit crop ~742.3Mbp 57,386 2010[97] contig N50 13.4 (kbp??)

scafold N50 1,542.7 (kbp??)

total coverage ~16.9x (Sanger + 454)

71.2% anchored

Prunus amygdalus (almond) Rosaceae Fruit crop 2013?[98]
Prunus avium (sweet cherry) cv. Stella Rosaceae Fruit crop 2013?[98]
Prunus mume (Chinese plum or Japanese apricot) Rosaceae Fruit crop 2012[99]</ref>
Prunus persica (peach) Rosaceae Fruit crop 265Mbp 27,852 2013[100] Sanger coverage:8.47x

WGS

ca 99% ESTs mapped

215.9 Mbp in pseudomolecules

Pyrus bretschneideri (ya pear or Chinese white pear) cv. Dangshansuli Rosaceae Fruit crop 2012[101]
Pyrus communis (European pear) cv. Doyenne du Comice Rosaceae Fruit crop 2013?[98]
Citrus clementina (Clementine) Rutaceae Fruit crop 2013?[102]
Citrus sinensis (Sweet orange) Rutaceae Fruit crop 2013?,[102] 2013[103]
Populus trichocarpa (poplar) Salicaceae Carbon sequestration, model tree, timber 510 Mbp (cytogenetic) 485 Mbp (coverage) 73,013 [Phytozome] 2006[104] Scaffold N50: 19.5 Mbp

Contig N50:552.8 Kbp [phytozome]

WGS

>=95 % cDNA found

Vitis vinifera (grape) genotype PN40024 Vitaceae fruit crop 2007[105]
Asterids[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Mimulus guttatus Phrymaceae model system for studying ecological and evolutionary genetics ca 430Mbp 26,718 JGI 2013?[106] Scaffold N50 = 1.1 Mbp

Contig N50 = 45.5 Kbp

Solanum lycopersicum (tomato) cv. Heinz 1706 Solanaceae Food crop ca 900Mbp 34,727 SGN 2011[107] 2012[108] Sanger/454/Illumina/Solid

Pseudomolecules spanning 91 scaffolds (760Mbp of which 594Mbp have been oriented )

over 98% ESTs mappable

Solanum pimpinellifolium (Currant Tomato) Solanaceae closest wild relative to tomato 2012[108] Illumina

contig N50: 5100bp

~40x coverage

Solanum tuberosum (potato) Solanaceae Food crop 844 Mbp kmer (856 Mbp) 39,031 PGSC 2011[109] Sanger/454/Illumina

79.2x coverage

contig N50: 31,429bp

scaffold N50: 1,318,511bp

Solanum commersonii (commerson's nightshade) Solanaceae Wild potato relative 838 Mbp kmer (840 Mbp) 37,662 UNINA, UMN, UNIVR, Sequentia Biotech, CGR 2015[110] Illumina

105x coverage

contig N50: 6,506bp

scaffold N50: 44,298bp

Cuscuta campestris

(field dodder)

Solanaceae model system for parasitic plants 556 Mbp kmer (581 Mbp) 44,303 RWTH Aachen University, Research Center Jülich, UiT The Arctic University of Norway, Helmholtz Zentrum München, Technical University Munich, University of Vienna 2018[111] scaffold N50 = 1.38 Mbp
Nicotiana benthamiana Solanaceae Close relative of tobacco ca 3Gbp 2012[112] Illumina

63x coverage

contig N50: 16,480bp

scaffold N50:89,778bp

>93% unigenes found

Nicotiana sylvestris (Tobacco plant) Solanaceae model system for studies of terpenoid production 2.636Gbp Philip Morris International 2013[113] 94x coverage

scaffold N50: 79.7 kbp

194kbp superscaffolds using physical Nicotiana map

Nicotiana tomentosiformis Solanaceae Tobacco progenitor 2.682 Gb Philip Morris International 2013[113] 146x coverage

scaffold N50: 82.6 kb

166kbp superscaffolds using physical Nicotiana map

Capsicum annuum (Pepper)

(a) cv. CM334 (b) cv. Zunla-1

Solanaceae Food crop ~3.48 Gbp (a) 34,903

(b) 35,336

(a) 2014[114]

(b) 2014[115]

N50 contig: (a) 30.0 kb (b) 55.4 kb

N50 scaffold: (a) 2.47 Mb (b) 1.23 Mb

Capsicum annuum var. glabriusculum (Chiltepin) Solanaceae Progenitor of cultivated pepper ~3.48 Gbp 34,476 2014[115] N50 contig: 52.2 kb

N50 scaffold: 0.45 Mb

Petunia Solanaceae Economically important flower 2011[116]
Utricularia gibba (humped bladderwort) Lentibulariaceae model system for studying genome size evolution; a carnivorous plant 81.87 Mb 28,494 LANGEBIO, CINVESTAV 2013[117] Scaffold N50: 80.839 Kb

Monocots[edit]

Grasses[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Setaria italica (Foxtail millet) Poaceae Model of C4 metabolism 2012[118]
Aegilops tauschii (Tausch's goatgrass) Poaceae bread wheat D-genome progenitor ca 4.36Gb 39,622 2017[119] pseudomolecule assembly
Brachypodium distachyon (purple false brome) Poaceae Model monocot 2010[120]
Dichanthelium oligosanthes (Heller's rosette grass) Poaceae C3 grass closely related to C4 species 960 Mb DDPSC 2016[121]
Hordeum vulgare (barley) Poaceae Model of ecological adoption IBSC 2012[122]
Oryza brachyantha (wild rice) Poaceae Disease resistant wild relative of rice 2013[123]
Oryza glaberrima (African rice) var CG14 Poaceae West-African species of rice 2010[124]
Oryza rufipogon (red rice) Poaceae Ancestor to Oryza sativa 406 Mb 37,071 SIBS 2012[125] Illumina HiSeq2000

100x coverage

Oryza sativa (long grain rice) ssp indica Poaceae Crop and model cereal 2002[126]
Oryza sativa (Short grain rice) ssp japonica Poaceae Crop and model cereal 2002[127]
Panicum virgatum (switchgrass) Poaceae biofuel 2013?[128]
Phyllostachys edulis (moso bamboo) Poaceae 2013[129]
Sorghum bicolor genotype BTx623 Poaceae Crop ca 730Mbp 34,496 2009[130] contig N50:195.4kbp

scaffold N50: 62.4Mbp

Sanger, 8.5x coverage

WGS

Triticum aestivum (bread wheat) Poaceae 20% of global nutrition 14.5Gb 107,891 IWGSC 2018[131] Non-repetitive sequence assembled

Roche 454/Illumina WGS

Triticum urartu Poaceae Bread wheat A-genome progenitor ca 4.94Gb BGI 2013[132] Non-repetitive sequence assembled

Illumina WGS

Zea mays (maize) ssp mays B73 Poaceae Cereal crop 2,300Mbp 39,656[133] 2009[134] contig N50 40kbp

scaffold N50: 76kbp

Sanger, 4-6x coverage per BAC

Other non-grasses[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Musa acuminata (Banana) Musaceae A-genome of modern banana cultivars 523 Mbp 36,542 2012[135] N50 contig: 43.1 kb

N50 scaffold: 1.3 Mb

Musa balbisiana (Wild banana) Musaceae B-genome of modern banana cultivars 438 Mbp 36,638 2013[136] N50 contig: 7.9 kb
Phoenix dactylifera (Date palm) Arecaceae Woody crop in arid regions 658 Mbp 28,800 2011[137] N50 contig: 6.4 kb
Elaeis guineensis (African oil palm) Arecaceae Oil-bearing crop ~1800 Mbp 34,800 2013[138] N50 scaffold: 1.27 Mb
Spirodela polyrhiza (Greater duckweed) Araceae Aquatic plant 158 bp 19,623 2014[139] N50 scaffold: 3.76 Mb
Phalaenopsis equestris (Moth orchid) Orchidaceae Breeding parent of many modern moth orchid cultivars and hybrids, Plant with crassulacean acid metabolism (CAM) 1600 Mbp 29,431 2014[140] N50 scaffold: 359,115 kb

Gymnosperm[edit]

Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Picea abies (Norway spruce) Pinaceae Timber, tonewood, ornamental such as Christmas tree 20 Gb 28,354 Umeå Plant Science Centre / SciLifeLab, Sweden 2013[141]
Picea glauca (White spruce) Pinaceae Timber, Pulp 20.8 Gb 56,064 Institutional Collaboration 2013[142]
Pinus taeda (Loblolly pine) Pinaceae Timber 20.15 Gb 50,172 Institutional collaboration 2014[143][144][145] N50 scaffold size: 66.9 kbp
Ginkgo biloba Ginkgoaceae 11.75 Gb 41,840 Institutional collaboration 2016[146] N50 scaffold size: 48.2 kbp

Uncategorised things to add...[edit]

the genome from Galdieria sulphuraria has finally been published[25] Genome size is 13.7 MB, and 6623 protein-coding genes were annotated.

Nakamura et al. published the genome sequence for Pyropia yezoensis.[147]

Bhattacharya et al. published the genome of Porphyridium purpureum.[148]

Press releases announcing sequencing[edit]

Not meeting criteria of the first paragraph of this article in being nearly full sequences with high quality, published, assembled and publicly available. This list includes species where sequences are announced in press releases or websites, but not in a data-rich publication in a refereed Journal with doi.

See also[edit]

External links[edit]

References[edit]

  1. ^ Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, et al. (March 2011). "Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics". Proceedings of the National Academy of Sciences of the United States of America. 108 (11): 4352–7. doi:10.1073/pnas.1016106108. PMC 3060233Freely accessible. PMID 21368207. 
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w "Production Strain(s)". Greenhouse Organisms. 
  3. ^ Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (July 2014). "Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes". BMC Genomics. 15 (1): 582. doi:10.1186/1471-2164-15-582. PMC 4111847Freely accessible. PMID 25012212. 
  4. ^ Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, et al. (August 2012). "Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage". Genome Biology. 13 (8): R74. doi:10.1186/gb-2012-13-8-r74. PMC 3491373Freely accessible. PMID 22925495. 
  5. ^ Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. (December 2012). "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature. 492 (7427): 59–65. doi:10.1038/nature11681. PMID 23201678. 
  6. ^ Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. (October 2007). "The Chlamydomonas genome reveals the evolution of key animal and plant functions". Science. 318 (5848): 245–50. Bibcode:2007Sci...318..245M. doi:10.1126/science.1143609. PMC 2875087Freely accessible. PMID 17932292. 
  7. ^ "CSI_1228 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-06. 
  8. ^ "ASM313072v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-06. 
  9. ^ "ASM311615v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-06. 
  10. ^ Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, et al. (September 2010). "The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex". The Plant Cell. 22 (9): 2943–55. doi:10.1105/tpc.110.076406. PMC 2965543Freely accessible. PMID 20852019. 
  11. ^ Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, et al. (May 1997). "Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division". Proceedings of the National Academy of Sciences of the United States of America. 94 (11): 5967–72. PMC 20890Freely accessible. PMID 9159184. 
  12. ^ Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, et al. (March 2013). "Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida". Proceedings of the National Academy of Sciences of the United States of America. 110 (13): 5247–52. doi:10.1073/pnas.1221259110. PMC 3612618Freely accessible. PMID 23503846. 
  13. ^ "ASM288719v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-06. 
  14. ^ Hovde BT, Deodato CR, Hunsperger HM, Ryken SA, Yost W, Jha RK, et al. (2015). "Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae)". PLoS Genetics. 11 (9): e1005469. doi:10.1371/journal.pgen.1005469. PMC 4580454Freely accessible. PMID 26397803. 
  15. ^ "Coccomyxa". JGI entry. 
  16. ^ Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, et al. (April 2004). "Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D". Nature. 428 (6983): 653–7. Bibcode:2004Natur.428..653M. doi:10.1038/nature02398. PMID 15071595. 
  17. ^ Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T (July 2007). "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biology. 5: 28. doi:10.1186/1741-7007-5-28. PMID 17623057. 
  18. ^ a b Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber AP, et al. (February 2012). "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants". Science. 335 (6070): 843–7. Bibcode:2012Sci...335..843P. doi:10.1126/science.1213561. PMID 22344442. 
  19. ^ Polle JE, Barry K, Cushman J, Schmutz J, Tran D, Hathwaik LT, et al. (October 2017). "Dunaliella salina Strain CCAP19/18". Genome Announcements. 5 (43): e01105–17. doi:10.1128/genomea.01105-17. PMID 29074648. 
  20. ^ Smith DR, Lee RW, Cushman JC, Magnuson JK, Tran D, Polle JE (May 2010). "The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA". BMC Plant Biology. 10: 83. doi:10.1186/1471-2229-10-83. PMID 20459666. 
  21. ^ Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, et al. (June 2010). "The Ectocarpus genome and the independent evolution of multicellularity in brown algae". Nature. 465 (7298): 617–21. Bibcode:2010Natur.465..617C. doi:10.1038/nature09016. PMID 20520714. 
  22. ^ Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie JM, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, de Vargas C, Verret F, von Dassow P, Valentin K, Van de Peer Y, Wheeler G, Dacks JB, Delwiche CF, Dyhrman ST, Glöckner G, John U, Richards T, Worden AZ, Zhang X, Grigoriev IV (July 2013). "Pan genome of the phytoplankton Emiliania underpins its global distribution". Nature. 499 (7457): 209–13. doi:10.1038/nature12221. PMID 23760476. 
  23. ^ "Galdieria sulphuraria Genome Project". MSU. Archived from the original on 4 September 2004. 
  24. ^ Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, Weber AP (February 2005). "Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae". Plant Physiology. 137 (2): 460–74. doi:10.1104/pp.104.051169. PMC 1065348Freely accessible. PMID 15710685. 
  25. ^ a b Schönknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP, Stanke M, et al. (March 2013). "Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote". Science. 339 (6124): 1207–10. doi:10.1126/science.1231707. PMID 23471408. 
  26. ^ Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. (December 2012). "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature. 492 (7427): 59–65. doi:10.1038/nature11681. PMID 23201678. 
  27. ^ "Micromonas p.C3". JGI MycoCosm. 
  28. ^ a b Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. (April 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–72. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID 19359590. 
  29. ^ "Micromonas p.N3". JGI MycoCosm. 
  30. ^ Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O, et al. (December 2013). "Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production". BMC Genomics. 14: 926. doi:10.1186/1471-2164-14-926. PMC 3890519Freely accessible. PMID 24373495. 
  31. ^ "ASM24072v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-10. 
  32. ^ "ASM187094v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-10. 
  33. ^ "ASM161424v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-10. 
  34. ^ Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, et al. (May 2007). "The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation". Proceedings of the National Academy of Sciences of the United States of America. 104 (18): 7705–10. Bibcode:2007PNAS..104.7705P. doi:10.1073/pnas.0611046104. PMC 1863510Freely accessible. PMID 17460045. 
  35. ^ Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, et al. (August 2006). "Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features". Proceedings of the National Academy of Sciences of the United States of America. 103 (31): 11647–52. Bibcode:2006PNAS..10311647D. doi:10.1073/pnas.0604795103. PMC 1544224Freely accessible. PMID 16868079. 
  36. ^ "Ostreococcus RCC809". JGI MycoCosm. University of California. 
  37. ^ Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. (November 2008). "The Phaeodactylum genome reveals the evolutionary history of diatom genomes". Nature. 456 (7219): 239–44. doi:10.1038/nature07410. PMID 18923393. 
  38. ^ Gonzalez-Esquer CR, Twary SN, Hovde BT, Starkenburg SR (January 2018). "Nuclear, Chloroplast, and Mitochondrial Genome Sequences of the Prospective Microalgal Biofuel Strain Picochlorum soloecismus". Genome Announcements. 6 (4). doi:10.1128/genomeA.01498-17. PMC 5786678Freely accessible. PMID 29371352. 
  39. ^ Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D (February 2015). "Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions". Environmental Microbiology. 17 (2): 412–26. doi:10.1111/1462-2920.12541. PMID 24965277. 
  40. ^ Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber AP, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS (2013). "Genome of the red alga Porphyridium purpureum". Nature Communications. 4: 1941. doi:10.1038/ncomms2931. PMID 23770768. 
  41. ^ Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, et al. (2013). "The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)". PLOS One. 8 (3): e57122. doi:10.1371/journal.pone.0057122. PMID 23536760. 
  42. ^ "SJ6.1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-10. 
  43. ^ Starkenburg SR, Polle JE, Hovde B, Daligault HE, Davenport KW, Huang A, Neofotis P, McKie-Krisberg Z (August 2017). "Scenedesmus obliquus Strain DOE0152z". Genome Announcements. 5 (32). doi:10.1128/genomeA.00617-17. PMC 5552973Freely accessible. PMID 28798164. 
  44. ^ "ThaOc_1.0 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-10. 
  45. ^ "ASM14940v2 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-10. 
  46. ^ Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, et al. (July 2010). "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science. 329 (5988): 223–6. Bibcode:2010Sci...329..223P. doi:10.1126/science.1188800. PMC 2993248Freely accessible. PMID 20616280. 
  47. ^ Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, et al. (January 2008). "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science. 319 (5859): 64–9. Bibcode:2008Sci...319...64R. doi:10.1126/science.1150646. PMID 18079367. 
  48. ^ Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, et al. (May 2011). "The Selaginella genome identifies genetic changes associated with the evolution of vascular plants". Science. 332 (6032): 960–3. Bibcode:2011Sci...332..960B. doi:10.1126/science.1203810. PMC 3166216Freely accessible. PMID 21551031. 
  49. ^ "Phytozome". JGI MycoCosm. 
  50. ^ Amborella Genome Project (December 2013). "The Amborella genome and the evolution of flowering plants". Science. 342 (6165): 1241089. doi:10.1126/science.1241089. PMID 24357323. 
  51. ^ "Amborella Genome Database". Penn State University. Archived from the original on 2013-06-28. 
  52. ^ "Aquilegia caerulea". Phytozome v9.1. 
  53. ^ Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li LT, et al. (May 2013). "Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)". Genome Biology. 14 (5): R41. doi:10.1186/gb-2013-14-5-r41. 
  54. ^ Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. (January 2014). "The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)". Nature. 505 (7484): 546–9. doi:10.1038/nature12817. PMID 24352233. 
  55. ^ a b Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, et al. (February 2017). "The genome of Chenopodium quinoa". Nature. 542 (7641): 307–312. doi:10.1038/nature21370. PMID 28178233. 
  56. ^ Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, Fairbanks DJ, Jellen EN, Maughan PJ (March 2016). "The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly". The Plant Genome. 9 (1). doi:10.3835/plantgenome2015.07.0062. PMID 27898770. 
  57. ^ "Phytozome". phytozome.jgi.doe.gov. Retrieved 2017-06-21. 
  58. ^ Wang N, Thomson M, Bodles WJ, Crawford RM, Hunt HV, Featherstone AW, Pellicer J, Buggs RJ (June 2013). "Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers". Molecular Ecology. 22 (11): 3098–111. doi:10.1111/mec.12131. PMID 23167599. 
  59. ^ a b c d Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, et al. (August 2013). "An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions". Nature Genetics. 45 (8): 891–8. doi:10.1038/ng.2684. PMID 23817568. 
  60. ^ Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, et al. (May 2011). "The Arabidopsis lyrata genome sequence and the basis of rapid genome size change". Nature Genetics. 43 (5): 476–81. doi:10.1038/ng.807. PMC 3083492Freely accessible. PMID 21478890. 
  61. ^ "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature. 408 (6814): 796–815. December 2000. doi:10.1038/35048692. PMID 11130711. 
  62. ^ Byrne SL, Erthmann PØ, Agerbirk N, Bak S, Hauser TP, Nagy I, Paina C, Asp T (January 2017). "The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry". Scientific Reports. 7: 40728. doi:10.1038/srep40728. PMC 5240624Freely accessible. PMID 28094805. 
  63. ^ Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, et al. (August 2011). "The genome of the mesopolyploid crop species Brassica rapa". Nature Genetics. 43 (10): 1035–9. doi:10.1038/ng.919. PMID 21873998. 
  64. ^ "Capsella rubella". Phytozome v9.1. 
  65. ^ Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo YL, et al. (July 2013). "The Capsella rubella genome and the genomic consequences of rapid mating system evolution". Nature Genetics. 45 (7): 831–5. doi:10.1038/ng.2669. PMID 23749190. 
  66. ^ Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, Shu S, Prochnik S, Xin M, Ma C, Schmutz J, Wing RA, Mitchell-Olds T, Schumaker KS, Wang X (2013). "The Reference Genome of the Halophytic Plant Eutrema salsugineum". Frontiers in Plant Science. 4: 46. doi:10.3389/fpls.2013.00046. PMC 3604812Freely accessible. PMID 23518688. 
  67. ^ Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, et al. (August 2011). "The genome of the extremophile crucifer Thellungiella parvula". Nature Genetics. 43 (9): 913–8. doi:10.1038/ng.889. PMC 3586812Freely accessible. PMID 21822265. 
  68. ^ van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (October 2011). "The draft genome and transcriptome of Cannabis sativa". Genome Biology. 12 (10): R102. doi:10.1186/gb-2011-12-10-r102. PMC 3359589Freely accessible. PMID 22014239. 
  69. ^ Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al. (April 2008). "The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)". Nature. 452 (7190): 991–6. doi:10.1038/nature06856. PMC 2836516Freely accessible. PMID 18432245. 
  70. ^ "Kalanchoe Genome". Centre for Genomic Research. University of Liverpool. Archived from the original on 2 April 2016. 
  71. ^ Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. (January 2013). "The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions". Nature Genetics. 45 (1): 51–8. doi:10.1038/ng.2470. PMID 23179023. 
  72. ^ Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, et al. (July 2012). "The genome of melon (Cucumis melo L.)". Proceedings of the National Academy of Sciences of the United States of America. 109 (29): 11872–7. doi:10.1073/pnas.1205415109. PMC 3406823Freely accessible. PMID 22753475. 
  73. ^ Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. (December 2009). "The genome of the cucumber, Cucumis sativus L". Nature Genetics. 41 (12): 1275–81. doi:10.1038/ng.475. PMID 19881527. 
  74. ^ Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, et al. (February 2013). "Draft genome sequence of the rubber tree Hevea brasiliensis". BMC Genomics. 14: 75. doi:10.1186/1471-2164-14-75. PMC 3575267Freely accessible. PMID 23375136. 
  75. ^ Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, et al. (February 2011). "Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L". DNA Research. 18 (1): 65–76. doi:10.1093/dnares/dsq030. PMC 3041505Freely accessible. PMID 21149391. 
  76. ^ Prochnik et al. (2012), J. Tropical Plant Biology
  77. ^ Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, et al. (September 2010). "Draft genome sequence of the oilseed species Ricinus communis". Nature Biotechnology. 28 (9): 951–6. doi:10.1038/nbt.1674. PMC 2945230Freely accessible. PMID 20729833. 
  78. ^ Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, et al. (2012). "The first draft of the pigeonpea genome sequence". Journal of Plant Biochemistry and Biotechnology. 21 (1): 98–112. doi:10.1007/s13562-011-0088-8. PMC 3886394Freely accessible. PMID 24431589. 
  79. ^ Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, et al. (November 2011). "Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers". Nature Biotechnology. 30 (1): 83–9. doi:10.1038/nbt.2022. PMID 22057054. 
  80. ^ a b Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, et al. (April 2016). "The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut". Nature Genetics. 48 (4): 438–46. doi:10.1038/ng.3517. PMID 26901068. 
  81. ^ Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. (March 2013). "Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement". Nature Biotechnology. 31 (3): 240–6. doi:10.1038/nbt.2491. PMID 23354103. 
  82. ^ Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, et al. (June 2013). "A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.)". The Plant Journal. 74 (5): 715–29. doi:10.1111/tpj.12173. PMID 23489434. 
  83. ^ Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. (January 2010). "Genome sequence of the palaeopolyploid soybean". Nature. 463 (7278): 178–83. Bibcode:2010Natur.463..178S. doi:10.1038/nature08670. PMID 20075913. 
  84. ^ Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, et al. (August 2008). "Genome structure of the legume, Lotus japonicus". DNA Research. 15 (4): 227–39. doi:10.1093/dnares/dsn008. PMC 2575887Freely accessible. PMID 18511435. 
  85. ^ Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, et al. (November 2011). "The Medicago genome provides insight into the evolution of rhizobial symbioses". Nature. 480 (7378): 520–4. Bibcode:2011Natur.480..520Y. doi:10.1038/nature10625. PMC 3272368Freely accessible. PMID 22089132. 
  86. ^ "Phaseolus vulgaris v1.0". Phytozome v9.1. 
  87. ^ Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, et al. (November 2012). "The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads". The Plant Journal. 72 (3): 461–73. doi:10.1111/j.1365-313X.2012.05093.x. PMID 22757964. 
  88. ^ Teh BT, Lim K, Yong CH, Ng CC, Rao SR, Rajasegaran V, et al. (November 2017). "The draft genome of tropical fruit durian (Durio zibethinus)". Nature Genetics. 49 (11): 1633–1641. doi:10.1038/ng.3972. PMID 28991254. 
  89. ^ "Gossypium raimondii v2.1". Phytozome v9.1. 
  90. ^ Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, et al. (February 2011). "The genome of Theobroma cacao". Nature Genetics. 43 (2): 101–8. doi:10.1038/ng.736. PMID 21186351. 
  91. ^ Pennisi E (September 2010). "Scientific publishing. Genomics researchers upset by rivals' publicity". Science. 329 (5999): 1585. Bibcode:2010Sci...329.1585P. doi:10.1126/science.329.5999.1585. PMID 20929817. 
  92. ^ Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O, et al. (June 2013). "The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color". Genome Biology. 14 (6): r53. doi:10.1186/gb-2013-14-6-r53. PMC 4053823Freely accessible. PMID 23731509. 
  93. ^ Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S, et al. (September 2012). "A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica". BMC Genomics. 13: 464. doi:10.1186/1471-2164-13-464. PMC 3507787Freely accessible. PMID 22958331. 
  94. ^ Krishnan NM, Pattnaik S, Deepak SA, Hariharan AK, Gaur P, Chaudhary R, Jain P, Vaidyanathan S, Bharath Krishna PG, Panda B (25 December 2011). "De novo sequencing and assembly ofAzadirachta indica fruit transcriptome" (PDF). Current Science. 101 (12): 1553–61. 
  95. ^ Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al. (June 2014). "The genome of Eucalyptus grandis". Nature. 510 (7505): 356–62. doi:10.1038/nature13308. PMID 24919147. 
  96. ^ Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al. (February 2011). "The genome of woodland strawberry (Fragaria vesca)". Nature Genetics. 43 (2): 109–16. doi:10.1038/ng.740. PMC 3326587Freely accessible. PMID 21186353. 
  97. ^ Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. (October 2010). "The genome of the domesticated apple (Malus × domestica Borkh.)". Nature Genetics. 42 (10): 833–9. doi:10.1038/ng.654. PMID 20802477. 
  98. ^ a b c "Four Rosaceae Genomes Released". Gramene: A Resource for Comparative Plant Genomics. 11 June 2013. 
  99. ^ Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, et al. (2012). "The genome of Prunus mume". Nature Communications. 3: 1318. doi:10.1038/ncomms2290. PMC 3535359Freely accessible. PMID 23271652. 
  100. ^ Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, et al. (May 2013). "The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution". Nature Genetics. 45 (5): 487–94. doi:10.1038/ng.2586. PMID 23525075. 
  101. ^ Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, et al. (February 2013). "The genome of the pear (Pyrus bretschneideri Rehd.)". Genome Research. 23 (2): 396–408. doi:10.1101/gr.144311.112. PMC 3561880Freely accessible. PMID 23149293. 
  102. ^ a b "Citrus clementina". Phytozome v9.1. 
  103. ^ Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, et al. (January 2013). "The draft genome of sweet orange (Citrus sinensis)". Nature Genetics. 45 (1): 59–66. doi:10.1038/ng.2472. PMID 23179022. 
  104. ^ Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. (September 2006). "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)". Science. 313 (5793): 1596–604. Bibcode:2006Sci...313.1596T. doi:10.1126/science.1128691. PMID 16973872. 
  105. ^ Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, et al. (September 2007). "The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla". Nature. 449 (7161): 463–7. Bibcode:2007Natur.449..463J. doi:10.1038/nature06148. PMID 17721507. 
  106. ^ "Mimulus guttatus". Phytozome v9.1. Archived from the original on 16 February 2016. 
  107. ^ "Details for species Solanum lycopersicum". Sol Genomics Network. 
  108. ^ a b Tomato Genome Consortium (May 2012). "The tomato genome sequence provides insights into fleshy fruit evolution". Nature. 485 (7400): 635–41. Bibcode:2012Natur.485..635T. doi:10.1038/nature11119. PMC 3378239Freely accessible. PMID 22660326. 
  109. ^ Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, et al. (July 2011). "Genome sequence and analysis of the tuber crop potato". Nature. 475 (7355): 189–95. doi:10.1038/nature10158. PMID 21743474. 
  110. ^ Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, et al. (April 2015). "The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives". The Plant Cell. 27 (4): 954–68. doi:10.1105/tpc.114.135954. PMC 4558694Freely accessible. PMID 25873387. 
  111. ^ Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, Bolger A, Schmidt MH, Bolger ME, Gundlach H, Mayer KF, Weiss-Schneeweiss H, Temsch EM, Krause K (June 2018). "Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris". Nature Communications. 9 (1): 2515. doi:10.1038/s41467-018-04344-z. PMC 6023873Freely accessible. PMID 29955043. 
  112. ^ Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (December 2012). "A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research". Molecular Plant-Microbe Interactions. 25 (12): 1523–30. doi:10.1094/MPMI-06-12-0148-TA. PMID 22876960. 
  113. ^ a b Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, et al. (June 2013). "Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis". Genome Biology. 14 (6): R60. doi:10.1186/gb-2013-14-6-r60. PMC 3707018Freely accessible. PMID 23773524. 
  114. ^ Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, et al. (March 2014). "Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species". Nature Genetics. 46 (3): 270–8. doi:10.1038/ng.2877. PMID 24441736. 
  115. ^ a b Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. (April 2014). "Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization". Proceedings of the National Academy of Sciences of the United States of America. 111 (14): 5135–40. doi:10.1073/pnas.1400975111. PMC 3986200Freely accessible. PMID 24591624. 
  116. ^ "The Petunia Platform". Archived from the original on 9 January 2011. 
  117. ^ Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang TH, et al. (June 2013). "Architecture and evolution of a minute plant genome". Nature. 498 (7452): 94–8. doi:10.1038/nature12132. PMC 4972453Freely accessible. PMID 23665961. 
  118. ^ Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. (May 2012). "Reference genome sequence of the model plant Setaria". Nature Biotechnology. 30 (6): 555–61. doi:10.1038/nbt.2196. PMID 22580951. 
  119. ^ Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, et al. (November 2017). "Genome sequence of the progenitor of the wheat D genome Aegilops tauschii". Nature. 551 (7443): 498–502. doi:10.1038/nature24486. PMID 29143815.  Vancouver style error: initials (help)
  120. ^ The International Brachypodium Initiative (February 2010). "Genome sequencing and analysis of the model grass Brachypodium distachyon". Nature. 463 (7282): 763–8. Bibcode:2010Natur.463..763T. doi:10.1038/nature08747. PMID 20148030. 
  121. ^ Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, Cousins AB, Kellogg EA, Brutnell TP (October 2016). "3 panicoid grass species Dichanthelium oligosanthes". Genome Biology. 17 (1): 223. doi:10.1186/s13059-016-1080-3. PMC 5084476Freely accessible. PMID 27793170. 
  122. ^ Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, et al. (November 2012). "A physical, genetic and functional sequence assembly of the barley genome". Nature. 491 (7426): 711–6. Bibcode:2012Natur.491..711T. doi:10.1038/nature11543. PMID 23075845. 
  123. ^ Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, et al. (2013). "Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution". Nature Communications. 4: 1595. doi:10.1038/ncomms2596. PMC 3615480Freely accessible. PMID 23481403. 
  124. ^ Hurwitz BL, Kudrna D, Yu Y, Sebastian A, Zuccolo A, Jackson SA, et al. (September 2010). "Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza". The Plant Journal. 63 (6): 990–1003. doi:10.1111/j.1365-313X.2010.04293.x. PMID 20626650. 
  125. ^ Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, et al. (October 2012). "A map of rice genome variation reveals the origin of cultivated rice". Nature. 490 (7421): 497–501. doi:10.1038/nature11532. PMID 23034647. 
  126. ^ Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. indica)". Science. 296 (5565): 79–92. Bibcode:2002Sci...296...79Y. doi:10.1126/science.1068037. PMID 11935017. 
  127. ^ Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)". Science. 296 (5565): 92–100. Bibcode:2002Sci...296...92G. doi:10.1126/science.1068275. PMID 11935018. 
  128. ^ "Panicum virgatum". Phytozome v9.1. 
  129. ^ Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, et al. (April 2013). "The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)". Nature Genetics. 45 (4): 456–61, 461e1–2. doi:10.1038/ng.2569. PMID 23435089. 
  130. ^ Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. (January 2009). "The Sorghum bicolor genome and the diversification of grasses" (PDF). Nature. 457 (7229): 551–6. Bibcode:2009Natur.457..551P. doi:10.1038/nature07723. PMID 19189423. 
  131. ^ International Wheat Genome Sequencing Consortium (IWGSC), et al. (August 2018). "Shifting the limits in wheat research and breeding using a fully annotated reference genome". Science. 361 (6403): 1–13. Bibcode:2012Natur.491..705B. doi:10.1126/science.aar7191. PMID 30115783.  Vancouver style error: initials (help)
  132. ^ Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. (April 2013). "Draft genome of the wheat A-genome progenitor Triticum urartu". Nature. 496 (7443): 87–90. Bibcode:2013Natur.496...87L. doi:10.1038/nature11997. PMID 23535596. 
  133. ^ "Maize Sequence". Gramene. 
  134. ^ Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. (November 2009). "The B73 maize genome: complexity, diversity, and dynamics". Science. 326 (5956): 1112–5. Bibcode:2009Sci...326.1112S. doi:10.1126/science.1178534. PMID 19965430. 
  135. ^ D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, et al. (August 2012). "The banana (Musa acuminata) genome and the evolution of monocotyledonous plants". Nature. 488 (7410): 213–7. Bibcode:2012Natur.488..213D. doi:10.1038/nature11241. PMID 22801500. 
  136. ^ Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (October 2013). ""A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids"". BMC Genomics. 14: 683. doi:10.1186/1471-2164-14-683. PMC 3852598Freely accessible. PMID 24094114. 
  137. ^ Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, et al. (May 2011). "De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)". Nature Biotechnology. 29 (6): 521–7. doi:10.1038/nbt.1860. PMID 21623354. 
  138. ^ Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, et al. (August 2013). "Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds". Nature. 500 (7462): 335–9. doi:10.1038/nature12309. PMC 3929164Freely accessible. PMID 23883927. 
  139. ^ Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, et al. (2014). "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle". Nature Communications. 5: 3311. doi:10.1038/ncomms4311. PMC 3948053Freely accessible. PMID 24548928. 
  140. ^ Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, et al. (January 2015). "The genome sequence of the orchid Phalaenopsis equestris". Nature Genetics. 47 (1): 65–72. doi:10.1038/ng.3149. PMID 25420146. 
  141. ^ Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, et al. (May 2013). "The Norway spruce genome sequence and conifer genome evolution". Nature. 497 (7451): 579–84. doi:10.1038/nature12211. PMID 23698360. 
  142. ^ Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MM, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay J, Bohlmann J, Jones SJ (June 2013). "Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data". Bioinformatics. 29 (12): 1492–7. doi:10.1093/bioinformatics/btt178. PMC 3673215Freely accessible. PMID 23698863. 
  143. ^ Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (March 2014). "Sequencing and assembly of the 22-gb loblolly pine genome". Genetics. 196 (3): 875–90. doi:10.1534/genetics.113.159715. PMC 3948813Freely accessible. PMID 24653210. 
  144. ^ Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, et al. (March 2014). "Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation". Genetics. 196 (3): 891–909. doi:10.1534/genetics.113.159996. PMC 3948814Freely accessible. PMID 24653211. 
  145. ^ Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, et al. (March 2014). "Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies". Genome Biology. 15 (3): R59. doi:10.1186/gb-2014-15-3-r59. PMC 4053751Freely accessible. PMID 24647006. 
  146. ^ Guan R, Zhao Y, Zhang H, et al. (21 November 2016). "Draft genome of the living fossil Ginkgo biloba". GigaScience. 5 (1): 49. doi:10.1186/s13742-016-0154-1. PMC 5118899Freely accessible. PMID 27871309. 
  147. ^ Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, et al. (2013). "The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)". PLOS One. 8 (3): e57122. doi:10.1371/journal.pone.0057122. PMC 3594237Freely accessible. PMID 23536760. 
  148. ^ Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, et al. (2013). "Genome of the red alga Porphyridium purpureum". Nature Communications. 4: 1941. doi:10.1038/ncomms2931. PMC 3709513Freely accessible. PMID 23770768. 
  149. ^ Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, et al. (August 2014). "Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome". Science. 345 (6199): 950–3. doi:10.1126/science.1253435. PMID 25146293. Lay summaryIRNA. 
  150. ^ "First Draft Of Oil Palm Genome Completed". Energy-daily.com. Retrieved 2010-08-27. 
  151. ^ "Jute genome decoded : Golden fibre to become healthy, high yielding, weather-tolerant; Hawaii-based Bangladeshi scientist leads team to landmark discovery". The Daily Star. 
  152. ^ "Jute genome sequence decoded by Bangladeshi scientists". Hindusthan Times. 
  153. ^ "স্বপ্নযাত্রা (Chasing the dream)". Jute Genome Project. 
  154. ^ "Welcome to the British Ash Tree Genome Project". The British Ash Tree Genome Project. The School of Biological & Chemical Sciences. 
  155. ^ "Ash genome reveals fungus resistance". BBC News.