List of solar storms

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Solar storms of different types are caused by disturbances on the Sun, most often coronal clouds associated with coronal mass ejections (CMEs) produced by solar flares emanating from active sunspot regions, or, less often, from coronal holes.


Active stars produce disturbances in space weather with the field of heliophysics the science that studies such phenomena; itself primarily an interdisciplinary combination of solar physics and planetary science. In the Solar System, the Sun can produce intense geomagnetic and proton storms capable of causing severe damage to technology including but not limited to large scale power outages, disruption or blackouts of radio communications (including GPS), and temporary to permanent disabling of satellites and other spaceborne technology. Intense solar storms may also be hazardous to high-latitude, high-altitude aviation[1] and to human spaceflight.[2] Geomagnetic storms are the cause of auroras.[3] The most significant known solar storm occurred in September 1859 and is known as the "Carrington event".[4] The damage from the most potent solar storms is capable of existentially threatening the stability of modern human civilization,[5][6] although proper preparedness and mitigation can substantially reduce the hazards.[7][8] Proxy data from Earth, as well as analysis of stars similar to the Sun suggest that it may be capable of producing so called superflares, those which are much larger than any flares in the historical record (as much as 1000x stronger every 5000 years).[9][10][11]

Notable events[edit]

Electromagnetic, geomagnetic, and/or proton storms[edit]

Proxy evidence[edit]

Although there is proxy evidence, interpretation of such proxy data remains unresolved.[18].

Direct measurements[edit]

Date(s) Event Significance
17 September 1770 [19][20]
September 1859 Solar storm of 1859 ("Carrington event") Overall most extreme storm ever documented; telegraph machines reportedly shocked operators and caused small fires; aurora visible in tropical areas; first solidly established connection of flares to geomagnetic disturbances
November 1882 17-20 November 1882[21]
13-15 May 1921 May 1921 geomagnetic storm[22] Among most extreme known geomagnetic storms; farthest equatorward (lowest latitude) aurora ever documented; burned out fuses, electrical apparatus, and telephone station; caused fires at signal tower and telegraph station; total communications blackouts lasting several hours
January 1938 25-26 January 1938 geomagnetic storm ("Fátima storm")
17–19 September 1941 [23]
23 February 1956 [24][25]
Late May 1967 [26] Blackout of polar surveillance radars during Cold War led U.S. military to scramble for nuclear war until solar origin confirmed
Early August 1972 Solar storm of August 1972[27] Fastest CME transit time recorded; most extreme solar particle event (SPE) by some measures and the most hazardous to human spaceflight during the Space Age; severe technological disruptions, caused accidental detonation of numerous magnetic-influence sea mines
March 1989 March 1989 geomagnetic storm Most extreme storm of the Space Age by several measures; outed power grid of province of Quebec
August 1989 [28]
6 April 2000 [29]
14 July 2000 Bastille Day event
11 April 2001 [29]
October 2003 Halloween solar storms, 2003[30][31] Among top few most intense storms of the Space Age
20 January 2005 [32][33]

Events not affecting Earth[edit]

The above events affected Earth (and its vicinity, known as the magnetosphere), whereas the following events occurred elsewhere in the solar system and were detected by monitoring spacecraft or other means.

Date(s) Event Significance
4 November 2003 Extreme solar flare[34][35][36] Strongest solar flare ever recorded at an estimated X28-X45+ (arguably, Y-class)
July 2012 Solar storm of 2012[37][38][39][40][41] Ultrafast CME directed away from Earth with characteristics that may have made it a Carrington-class storm

See also[edit]


  1. ^
  2. ^ Phillips, Tony (21 Jan 2009). "Severe Space Weather--Social and Economic Impacts". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  3. ^ "NOAA Space Weather Scales" (PDF). NOAA Space Weather Prediction Center. 1 Mar 2005. Retrieved 2017-09-13.
  4. ^ Bell, Trudy E.; T. Phillips (6 May 2008). "A Super Solar Flare". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  5. ^ Kappenman, John (2010). Geomagnetic Storms and Their Impacts on the U.S. Power Grid (PDF). META-R. 319. Goleta, CA: Metatech Corporation for Oak Ridge National Laboratory. OCLC 811858155. Archived from the original (PDF) on 2012-08-19.
  6. ^ Phillips, Tony (21 Jan 2009). "Severe Space Weather--Social and Economic Impacts". Science at NASA. NASA. Retrieved 2015-11-20.
  7. ^ National Space Weather Action Plan (PDF). Washington, DC: National Science and Technology Council. 28 Oct 2015.
  8. ^ Lingam, Manasvi; Abraham Loeb (2017). "Impact and mitigation strategy for future solar flares". arXiv:1709.05348 [astro-ph.EP].
  9. ^ Shibata, Kazunari (15 Apr 2015). "Superflares on Solar Type Stars and Their Implications on the Possibility of Superflares on the Sun" (PDF). 2015 Space Weather Workshop. Boulder, CO: Space Weather Prediction Center.
  10. ^ Karoff, Christoffer; et al. (2016). "Observational evidence for enhanced magnetic activity of superflare stars". Nat. Commun. 7 (11058): 11058. Bibcode:2016NatCo...711058K. doi:10.1038/ncomms11058. PMC 4820840. PMID 27009381.
  11. ^ Lingam, Manasvi; A. Loeb (2017). "Risks for Life on Habitable Planets from Superflares of Their Host Stars". Astrophysical Journal. 848 (1): 41. arXiv:1708.04241. Bibcode:2017ApJ...848...41L. doi:10.3847/1538-4357/aa8e96.
  12. ^ a b c d e f g h i j Usoskin, Ilya G.; Gennady A. Kovaltsov (2012). "Occurrence of Extreme Solar Particle Events: Assessment from Historical Proxy Data". The Astrophysical Journal. 757 (92): 1–6. arXiv:1207.5932. Bibcode:2012ApJ...757...92U. doi:10.1088/0004-637X/757/1/92.
  13. ^ Miyake; et al. (2012). "A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan". Nature. 486: 240. Bibcode:2012Natur.486..240M. doi:10.1038/nature11123.
  14. ^ Melott, Adrian L.; B. C. Thomas (2012). "Causes of an AD 774–775 14C increase". Nature. 491 (7426): E1–E2. arXiv:1212.0490. Bibcode:2012Natur.491E...1M. doi:10.1038/nature11695. PMID 23192153.
  15. ^ Usoskin; et al. (2013). "The AD775 cosmic event revisited: the Sun is to blame". Astron. Astrophys. 552: L3. arXiv:1302.6897. Bibcode:2013A&A...552L...3U. doi:10.1051/0004-6361/201321080.
  16. ^ a b Mekhaldi, Florian; et al. (2015). "Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4". Nature Communications. 6. Bibcode:2015NatCo...6E8611M. doi:10.1038/ncomms9611.
  17. ^ Fusa, Miyake; Kimiaki Masuda; Toshio Nakamura (2013). "Another rapid event in the carbon-14 content of tree rings". Nature Communications. 4 (1748): 1–4. Bibcode:2013NatCo...4E1748M. doi:10.1038/ncomms2783. PMID 23612289.
  18. ^ Mekhaldi, F.; et al. (2017). "No Coincident Nitrate Enhancement Events in Polar Ice Cores Following the Largest Known Solar Storms". Journal of Geophysical Research: Atmospheres. 122 (21): 11, 900–11, 913. doi:10.1002/2017JD027325.
  19. ^ Kataoka, Ryuho; K. Iwahashi (2017). "Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm". Space Weather. 15. Bibcode:2017SpWea..15.1314K. doi:10.1002/2017SW001690.
  20. ^ Hayakawa, Hisashi; et al. (2017). "Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents". Astrophysical Journal Letters. 850 (2): L31. arXiv:1711.00690. Bibcode:2017ApJ...850L..31H. doi:10.3847/2041-8213/aa9661.
  21. ^ Love, Jeffrey J. (2018). "The Electric Storm of November 1882". Space Weather. 16. doi:10.1002/2017SW001795.
  22. ^ Silverman, S.M.; E.W. Cliver (2001). "Low-latitude auroras: the magnetic storm of 14–15 May 1921". J. Atmospheric Sol.-Terr. Phys. 63 (5): 523–535. doi:10.1016/S1364-6826(00)00174-7.
  23. ^ Love, Jeffrey J.; Coïsson, P. (15 Sep 2016). "The Geomagnetic Blitz of September 1941". Eos. 97. doi:10.1029/2016EO059319.
  24. ^ Meyer, P.; Parker, E. N.; Simpson, J. A (1956). "Solar Cosmic Rays of February, 1956 and Their Propagation through Interplanetary Space". Phys Rev. 104 (3): 768–83. Bibcode:1956PhRv..104..768M. doi:10.1103/PhysRev.104.768.
  25. ^ Belov, A.; E. Eroshenko; H. Mavromichalaki; C. Plainaki; V. Yanke (15 September 2005). "Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956" (PDF). Annales Geophysicae. 23 (6): 2281–2291. Bibcode:2005AnGeo..23.2281B. doi:10.5194/angeo-23-2281-2005.
  26. ^ Knipp, Delores J.; A. C. Ramsay; E. D. Beard; A. L. Boright; W. B. Cade; I. M. Hewins; R. McFadden; W. F. Denig; L. M. Kilcommons; M. A. Shea; D. F. Smart (2016). "The May 1967 Great Storm and Radio Disruption Event: Extreme Space Weather and Extraordinary Responses". Space Weather. 14 (9): 614–633. Bibcode:2016SpWea..14..614K. doi:10.1002/2016SW001423.
  27. ^ Knipp, Delores J.; B. J. Fraser; M. A. Shea; D. F. Smart (2018). "On the Little‐Known Consequences of the 4 August 1972 Ultra‐Fast Coronal Mass Ejecta: Facts, Commentary and Call to Action". Space Weather. 16. doi:10.1029/2018SW002024.
  28. ^ Deffree, Suzanne (16 Aug 2013). "Solar flare impacts microchips, August 16, 1989". EDN.
  29. ^ a b Katamzi-Joseph, Zama Thobeka; J. B. Habarulema; M. Hernández-Pajares (2017). "Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001". Space Weather. 15 (9): 1177–90. Bibcode:2017SpWea..15.1177K. doi:10.1002/2017SW001674.
  30. ^ Weaver, Michael; W. Murtagh; et al. (2004). Halloween Space Weather Storms of 2003 (PDF). NOAA Technical Memorandum. OAR SEC-88. Boulder, CO: Space Environment Center. OCLC 68692085. Archived from the original (PDF) on 2011-07-28.
  31. ^ Balch, Christopher; et al. (2004). Service Assessment: Intense Space Weather Storms October 19 – November 07, 2003 (PDF). NOAA Technical Memorandum. Silver Spring, MD: Department of Commerce.
  32. ^ Mitthumsiri, W.; A. Seripienlert; U. Tortermpun; P.-S. Mangeard; A. Sáiz; D. Ruffolo; R. Macatanga (2017). "Modeling polar region atmospheric ionization induced by the giant solar storm on 20 January 2005". J. Geophys. Res. Space Phys. 122 (8): 7946. Bibcode:2017JGRA..122.7946M. doi:10.1002/2017JA024125.
  33. ^ Bieber, J. W.; J. Clem; P. Evenson; R. Pyle; A. Sáiz; D. Ruffolo (2013). "Giant Ground Level Enhancement of Relativistic Solar Protons on 2005 January 20. I. Spaceship Earth Observations". Astrophysical Journal. 771 (92): 92. Bibcode:2013ApJ...771...92B. doi:10.1088/0004-637X/771/2/92.
  34. ^ Thomson, Neil R.; C. J. Rodger; R. L. Dowden (2004). "Ionosphere gives size of greatest solar flare". Geophysical Research Letters. 31 (6): n/a. Bibcode:2004GeoRL..31.6803T. doi:10.1029/2003GL019345.
  35. ^ Thomson, Neil R.; C. J. Rodger; M. A. Clilverd (2005). "Large solar flares and their ionospheric D region enhancements". Journal of Geophysical Research: Space Physics. 110 (A6): A06306. Bibcode:2005JGRA..110.6306T. doi:10.1029/2005JA011008.
  36. ^ Brodrick, David; S. Tingay; M. Wieringa (2005). "X-ray magnitude of the 4 November 2003 solar flare inferred from the ionospheric attenuation of the galactic radio background". Journal of Geophysical Research: Space Physics. 110 (A9): A09S36. Bibcode:2005JGRA..110.9S36B. doi:10.1029/2004JA010960.
  37. ^ Baker, D. N.; X. Li; A. Pulkkinen; C. M. Ngwira; M. L. Mays; A. B. Galvin; K. D. C. Simunac (2013). "A major solar eruptive event in July 2012: Defining extreme space weather scenarios". Space Weather. 11 (10): 585–91. Bibcode:2013SpWea..11..585B. doi:10.1002/swe.20097.
  38. ^ Ngwira, Chigomezyo M.; A. Pulkkinen; M. Leila Mays; M. M. Kuznetsova; A. B. Galvin; K. Simunac; D. N. Baker; X. Li; Y. Zheng; A. Glocer (2013). "Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed?". Space Weather. 11 (12): 671–9. Bibcode:2013SpWea..11..671N. doi:10.1002/2013SW000990.
  39. ^ Ying D. Liu; J. G. Luhmann; P. Kajdič; E. K.J. Kilpua; N. Lugaz; N. V. Nitta; C. Möstl; B. Lavraud; S. D. Bale; C. J. Farrugia; A. B. Galvin (2014). "Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections". Nature Communications. 5 (3481): 3481. arXiv:1405.6088. Bibcode:2014NatCo...5E3481L. doi:10.1038/ncomms4481. PMID 24642508.
  40. ^ Phillips, Tony (2 May 2014). "Carrington-class CME Narrowly Misses Earth". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  41. ^ Phillips, Dr. Tony (23 July 2014). "Near Miss: The Solar Superstorm of July 2012". NASA. Retrieved 26 July 2014.

External links[edit]