List of superconductors

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The table showing major parameters of major superconductors of simple structure. X:Y means material X doped with element Y, TC is the highest reported transition temperature in kelvins and HC is a critical magnetic field in teslas. "BCS" means whether or not the superconductivity is explained within the BCS theory.

Formula TC (K) HC (T) Type BCS References
Elements
Al 1.20 0.01 I yes [1][2][3]
Cd 0.52 0.0028 I yes [2][3]
Diamond:B 11.4 4 II yes [4][5][6]
Ga 1.083 0.0058 I yes [7][3][2]
Hf 0.165 I yes [2]
α-Hg 4.15 0.04 I yes [2][3]
β-Hg 3.95 0.04 I yes [2][3]
In 3.4 0.03 I yes [2][3]
Ir 0.14 0.0016[7] I yes [2]
α-La 4.9 I yes [2]
β-La 6.3 I yes [2]
Mo 0.92 0.0096 I yes [2][7]
Nb 9.26 0.82 II yes [2][3]
Os 0.65 0.007 I yes [2]
Pa 1.4 I yes [8]
Pb 7.19 0.08 I yes [2][3]
Re 2.4 0.03 I yes [2][3][9]
Ru 0.49 0.005 I yes [2][3]
Si:B 0.4 0.4 II yes [10]
Sn 3.72 0.03 I yes [2][3]
Ta 4.48 0.09 I yes [2][3]
Tc 7.46–11.2 0.04 II yes [2][3]
α-Th 1.37 0.013 I yes [2][3]
Ti 0.39 0.01 I yes [2][3]
Tl 2.39 0.02 I yes [2][3]
α-U 0.68 I yes [2][8]
β-U 1.8 I yes [8]
V 5.03 1 II yes [2][3]
α-W 0.015 0.00012 I yes [7][8][11]
β-W 1–4 [11]
Zn 0.855 0.005 I yes [2][3]
Zr 0.55 0.014 I yes [2][3]
Compounds
Ba8Si46 8.07 0.008 II yes [12]
C6Ca 11.5 0.95 II [13]
C6Li3Ca2 11.15 II [13]
C8K 0.14 II [13]
C8KHg 1.4 II [13]
C6K 1.5 II [14]
C3K 3.0 II [14]
C3Li <0.35 II [14]
C2Li 1.9 II [14]
C3Na 2.3–3.8 II [14]
C2Na 5.0 II [14]
C8Rb 0.025 II [13]
C6Sr 1.65 II [13]
C6Yb 6.5 II [13]
C60Cs2Rb 33 II yes [15]
C60K3 19.8 0.013 II yes [16][12]
C60RbX 28 II yes [17]
FeB4 2.9 I [18]
InN 3 II yes [19]
In2O3 3.3 ~3 II yes [20]
LaB6 0.45 yes [21]
MgB2 39 74 II yes [22]
Nb3Al 18 II yes [2]
Nb3Ge 23.2 37 II yes [23]
NbO 1.38 II yes [24]
NbN 16 II yes [2]
Nb3Sn 18.3 30 II yes [25]
NbTi 10 15 II yes [2]
SiC:B 1.4 0.008 I yes [26]
SiC:Al 1.5 0.04 II yes [26]
TiN 5.6 yes [27]
YB6 8.4 II yes [28][29][30]
ZrN 10 yes [31]
ZrB12 6.0 I yes [30]

See also[edit]

References[edit]

  1. ^ Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum". Physical Review. 111: 132. Bibcode:1958PhRv..111..132C. doi:10.1103/PhysRev.111.132. 
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Matthias, B. T.; Geballe, T. H.; Compton, V. B. (1963). "Superconductivity". Reviews of Modern Physics. 35: 1. Bibcode:1963RvMP...35....1M. doi:10.1103/RevModPhys.35.1. 
  3. ^ a b c d e f g h i j k l m n o p q r s Eisenstein, J. (1954). "Superconducting Elements". Reviews of Modern Physics. 26 (3): 277. Bibcode:1954RvMP...26..277E. doi:10.1103/RevModPhys.26.277. 
  4. ^ Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004). "Superconductivity in diamond". Nature. 428 (6982): 542–545. doi:10.1038/nature02449. PMID 15057827. 
  5. ^ Ekimov, E. A.; Sidorov, V. A.; Zoteev, A. V.; Lebed, Y. B.; Thompson, J. D.; Stishov, S. M. (2008). "Structure and superconductivity of isotope-enriched boron-doped diamond". Science and Technology of Advanced Materials. 9 (4): 044210. Bibcode:2008STAdM...9d4210E. doi:10.1088/1468-6996/9/4/044210. PMC 5099641Freely accessible. PMID 27878027.  open access publication – free to read
  6. ^ Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H.; Tachiki, M. (2007). "Superconducting properties of homoepitaxial CVD diamond". Diamond and Related Materials. 16 (4–7): 911. Bibcode:2007DRM....16..911T. doi:10.1016/j.diamond.2007.01.027. 
  7. ^ a b c d Kaxiras, Efthimios (2003). Atomic and electronic structure of solids. Cambridge University Press. p. 283. ISBN 0-521-52339-7. 
  8. ^ a b c d Fowler, R. D.; Matthias, B. T.; Asprey, L. B.; Hill, H. H.; Lindsay, J. D. G.; Olsen, C. E.; White, R. W. (1965). "Superconductivity of Protactinium". Physical Review Letters. 15 (22): 860. Bibcode:1965PhRvL..15..860F. doi:10.1103/PhysRevLett.15.860. 
  9. ^ Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium". Physical Review. 88 (2): 309. Bibcode:1952PhRv...88..309D. doi:10.1103/PhysRev.88.309. 
  10. ^ Bustarret, E.; Marcenat, C.; Achatz, P.; Kačmarčik, J.; Lévy, F.; Huxley, A.; Ortéga, L.; Bourgeois, E.; Blase, X.; Débarre, D.; Boulmer, J. (2006). "Superconductivity in doped cubic silicon". Nature. 444 (7118): 465. Bibcode:2006Natur.444..465B. doi:10.1038/nature05340. PMID 17122852. 
  11. ^ a b Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A. J.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors". IEEE Transactions on Appiled Superconductivity. 15 (2): 3528. doi:10.1109/TASC.2005.849033. 
  12. ^ a b Rachi, T.; Kumashiro, R.; Fukuoka, H.; Yamanaka, S.; Tanigaki, K. (2006). "Sp3-network superconductors made from IVth-group elements". Science and Technology of Advanced Materials. 7: S88. Bibcode:2006STAdM...7S..88R. doi:10.1016/j.stam.2006.04.006.  open access publication – free to read
  13. ^ a b c d e f g Emery, N.; Hérold, C.; Marêché, J. F. O.; Lagrange, P. (2008). "Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials. 9 (4): 044102. Bibcode:2008STAdM...9d4102E. doi:10.1088/1468-6996/9/4/044102. PMC 5099629Freely accessible. PMID 27878015.  open access publication – free to read
  14. ^ a b c d e f Belash, I. T.; Zharikov, O. V.; Palnichenko, A. V. (1989). "Superconductivity of GIC with Li, Na and K". Synthetic Metals. 34: 455. doi:10.1016/0379-6779(89)90424-4. 
  15. ^ Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. (1991). "Superconductivity at 33 K in CsxRbyC60". Nature. 352 (6332): 222. Bibcode:1991Natur.352..222T. doi:10.1038/352222a0. 
  16. ^ Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60". Science. 256 (5060): 1190. Bibcode:1992Sci...256.1190X. doi:10.1126/science.256.5060.1190. PMID 17795215. 
  17. ^ Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A.; Zahurak, S.; Makhija, A. (1991). "Superconductivity at 28 K in RbxC60". Physical Review Letters. 66 (21): 2830–2832. doi:10.1103/PhysRevLett.66.2830. PMID 10043627. 
  18. ^ "First fully computer-designed superconductor". KurzweilAI. Retrieved 2013-10-11. 
  19. ^ Inushima, T. (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials. 7: S112. Bibcode:2006STAdM...7S.112I. doi:10.1016/j.stam.2006.06.004.  open access publication – free to read
  20. ^ Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. (2008). "Superconductivity in transparent zinc-doped In2O3 films having low carrier density". Science and Technology of Advanced Materials. 9 (4): 044208. Bibcode:2008STAdM...9d4208M. doi:10.1088/1468-6996/9/4/044208. PMC 5099639Freely accessible. PMID 27878025.  open access publication – free to read
  21. ^ Schell, G.; Winter, H.; Rietschel, H.; Gompf, F. (1982). "Electronic structure and superconductivity in metal hexaborides". Physical Review B. 25 (3): 1589. Bibcode:1982PhRvB..25.1589S. doi:10.1103/PhysRevB.25.1589. 
  22. ^ Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. (2001). "Superconductivity at 39 K in magnesium diboride". Nature. 410 (6824): 63. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039. 
  23. ^ Oya, G. I.; Saur, E. J. (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties". Journal of Low Temperature Physics. 34 (5–6): 569. Bibcode:1979JLTP...34..569O. doi:10.1007/BF00114941. 
  24. ^ Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems". Journal of Low Temperature Physics. 7 (3–4): 291. Bibcode:1972JLTP....7..291H. doi:10.1007/BF00660068. 
  25. ^ Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn". Physical Review. 95 (6): 1435. Bibcode:1954PhRv...95.1435M. doi:10.1103/PhysRev.95.1435. 
  26. ^ a b Muranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. (2008). "Superconductivity in carrier-doped silicon carbide". Science and Technology of Advanced Materials. 9 (4): 044204. Bibcode:2008STAdM...9d4204M. doi:10.1088/1468-6996/9/4/044204. PMC 5099635Freely accessible. PMID 27878021.  open access publication – free to read
  27. ^ Pierson, Hugh O. (1996). Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193. ISBN 0-8155-1392-5. 
  28. ^ Fisk, Z.; Schmidt, P. H.; Longinotti, L. D. (1976). "Growth of YB6 single crystals". Materials Research Bulletin. 11 (8): 1019. doi:10.1016/0025-5408(76)90179-3. 
  29. ^ Szabó, P.; Kačmarčík, J.; Samuely, P.; Girovský, J. N.; Gabáni, S.; Flachbart, K.; Mori, T. (2007). "Superconducting energy gap of YB6 studied by point-contact spectroscopy". Physica C: Superconductivity. 460–462: 626. Bibcode:2007PhyC..460..626S. doi:10.1016/j.physc.2007.04.135. 
  30. ^ a b Tsindlekht, M. I.; Genkin, V. M.; Leviev, G. I.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M. A.; Shitsevalova, N. Y. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal". Physical Review B. 78 (2): 024522. Bibcode:2008PhRvB..78b4522T. doi:10.1103/PhysRevB.78.024522. 
  31. ^ Lengauer, W. (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means of Tc measurements". Surface and Interface Analysis. 15 (6): 377. doi:10.1002/sia.740150606. 

External links[edit]