List of thermal conductivities

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat.

Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.

Mixtures may have variable thermal conductivities due to composition. Note that for gases in usual conditions, heat transfer by advection (caused by convection or turbulence for instance) is the dominant mechanism compared to conduction.

This table shows thermal conductivity in SI units of watts per metre per Kelvin (W·m−1·K−1). Some measurements use the imperial unit BTUs per foot per hour per degree Fahrenheit (1 BTU h−1 ft−1 F−1 = 1.728 W·m−1·K−1).[1]

Material Thermal conductivity [W·m−1·K−1] Temperature [K] Electrical conductivity @ 293 K
[Ω−1·m−1]
Notes
Acrylic Glass (Plexiglas V045i) 0.17[2]-0.19[2]-0.2[3] 296[2] 7.143E-15[2] - 5.0E-14[2]
Air, macrostructure 0.024[4][5][6]-0.025[7]
0.0262 (1 bar)[8]
0.0457 (1 bar)[8]

Formula Values
d=1 centimeter
Standard Atmospheric Pressure
0.0209[9]
0.0235[9]
0.0260[9]
0.1 atmosphere
0.0209[10]
0.0235[10]
0.0260[10]
0.01 atmospheres
0.0209[10]
0.0235[10]
0.0259[10]
0.001 atmospheres
0.0205[10]
0.0230[10]
0.0254[10]
0.0001 atmospheres
0.0178[10]
0.0196[10]
0.0212[10]
10-5atmospheres
0.00760[10]
0.00783[10]
0.00800[10]
10-6atmospheres
0.00113[10]
0.00112[10]
0.00111[10]
10-7atmospheres
0.000119[10]
0.000117[10]
0.000115[10]
273[4][5]-293[7]-298[6]
300[8]
600[8]




233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2[9]
266.5[9]
299.9[9]
hiAerosols2.95[11]-loAerosols7.83[11]×10−15 (78.03%N2,21%O2,+0.93%Ar,+0.04%CO2) (1 atm)

All formula values calculated from the Lasance formula: Lasance, Clemens J., "The Thermal Conductivity of Air at Reduced Pressures and Length Scales," Electronics Cooling, November 2002.[10] Plate separation = one centimeter. The primary values were taken from Weast at the normal pressures table in the CRC handbook on page E2.[9]
Air, microstructure Formula Values
d=1 millimeter
Standard Atmospheric Pressure
0.0209
0.0235
0.0260
0.1 atmosphere
0.0209
0.0235
0.0259
0.01 atmospheres
0.0205
0.0230
0.0254
0.001 atmospheres
0.0178
0.0196
0.0212
0.0001 atmospheres
0.00760
0.00783
0.00800
10-5 atmospheres
0.00113
0.00112
0.00111
10-6 atmospheres
0.000119
0.000117
0.000115
10-7 atmospheres
0.0000119
0.0000117
0.0000116
List[10]



233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

233.2
266.5
299.9

All values calculated from the Lasance formula: Lasance, Clemens J., "The Thermal Conductivity of Air at Reduced Pressures and Length Scales," Electronics Cooling, November 2002.[10] Plate separation = one millimeter.

Note that no amount of vacuum will obstruct thermal radiation. Instead the most effective vacuum insulation that is found in the literature has numerous foils in it.
Such insulation has been reported with total heat transfer as low as 0.0001 W⋅m−1⋅K−1 through some low temperature intervals that sound like they might extend with one end of them up to room temperature sometimes.[12]
Alcohols OR Oils 0.1[6][7]-0.110[13]-0.21[6][7]-0.212[13] 293[7]-298[6]-300[13]
Aluminum, alloy Mannchen 1931:
92% Aluminum, 8% Magnesium
Cast
72.8
100.0
126
1.xx⋅102

Annealed
76.6
1.0x⋅102
120.1
135.6

88%Aluminum, 12% Magnesium
Cast
56.1
77.4
101.3
118.4

Mever-Rassler 1940:
93.0% Aluminum, 7.0% Magnesium
108.7
List[14]


87
273
373
476


87
273
373
476



87
273
373
476



348.2
Mannchen, W., Z Metalik..23, 193-6, 1931 in TPRC Volume 1 pages 478, 479 and 1447. Xs have been entered where the numbers in the TPRC Data Series are smudged up too much and various electrical conductivities at various temperatures are specified in the reference.

Mever-Rassler. The Mever-Rassler alloy has a density of 2.63 g cm−1. Mever-Rassler, F., Metallwirtschaft. 19, 713-21, 1940 in Volume 1 pages 478, 479 and 1464.[14]
Aluminum, pure 204.3[15]-205[4]-220[16]-237[7][17][18][19]-250[6]
214.6[15]
249.3[15]
TPRC Aluminum
4102
8200
12100
15700
18800
21300
22900
23800
24000
23500
22700
20200
17600
11700
7730
3180[?]
2380
1230
754
532
414
344
302
248
237
236
237
240
237
232
226
220
213
List[14]

CRC Aluminum
780
1550
2320
3080
3810
4510
5150
5730
6220
6610
6900
7080
7150
7130
7020
6840
6350
5650
4000
2850
2100
1600
1250
1000
670
500
400
340
300
247
237
235
236
237
240
240
237
232
226
220
213
List[9]
293[7][15]-298[6][18][19]
366[15]
478[15]

1
2
3
4
5
6
7
8
9
10
11
13
15
20
25
30
40
50
60
70
80
90
100
150
200
273.2
300
400
500
600
700
800
900



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
20
25
30
35
40
45
50
60
70
80
90
100
150
200
250
273
300
350
400
500
600
700
800
900

37,450,000[18] - 37,740,000[20] The TPRC list is the estimate of the Thermophysical Properties Research Center which was sponsored by the government in the 1960s. Performing Organization: Purdue University. Controlling Organization: Defense Logistics Agency. Documented summaries from numerous scientific journals and etc. and critical estimates. 17000 pages in 13 volumes.

TPRC pure aluminum is aluminum that is 99.9999% pure aluminum and residual electrical resistivity ρ0=0.000593 μΩ cm.

By comparison CRC pure aluminum is aluminum that is 99.996+% pure aluminum and ρ at 4.2 Kelvins is used approximately as ρ0.

In any case the CRC kind of pure aluminum has its CRC kind of ρ0=0.00315 μΩ cm. CRC handbook, 48th Edition, E-10.[9]

This material is superconductive (electrical) at temperatures below 1.183 Kelvins. Weast page E-78[9]
Aluminum nitride 170[17]-175[21]-190[21] 293[21] 1×10^−11[21]
Aluminum oxide Pure 26[22]-30[7]-35[22]-39[17]-40[23]
NBS, Ordinary 27[24]
16[24]
10.5[24]
8.0[24]
6.6[24]
5.9[24]
5.6[24]
5.6[24]
6.0[24]
7.2[24]
Slip Cast: 11.1[25]
10.0[25]
8.37[25]
7.95[25]
6.90[25]
5.86[25]
5.65[25]
5.65[25]
5.65[25]
Sapphire 15.5[25]
13.9[25]
12.4[25]
10.6[25]
8.71[25]
8.04[25]
7.68[25]
7.59[25]
7.61[25]
7.86[25]
8.13[25]
8.49[25]
293[7][22][23]
400[24]
600[24]
800[24]
1000[24]
1200[24]
1400[24]
1600[24]
1800[24]
2000[24]
2200[24]
613.2[25]
688.2[25]
703.2[25]
873.2[25]
943.2[25]
1033.2[25]
1093[25]
1203.2[25]
1258.2[25]
591.5[25]
651.2[25]
690.2[25]
775.2[25]
957.2[25]
1073.2[25]
1173.2[25]
1257.2[25]
1313.2[25]
1384.2[25]
14X9.2[25]
1508.2[25]
1×10^−12-[22][23] The NBS recommended ordinary values are for 99.5% pure polycrystalline alumina at 98% density.[24] Slip Cast Values are taken from Kingery, W.D., J. Am Ceram. Soc., 37, 88-90, 1954, TPRC pages 423 and 1553.[25] Sapphire values are taken from Kingery, W.D. and Norton, F.H., USAEC Rept. NYO-6447, 1-14, 1955, TPRC pages 94, 96 & 1160.[25]

Errata: The numbered references in the NSRDS-NBS-8 pdf are found near the end of the TPRC Data Book Volume 2 and not somewhere in Volume 3 like it says.[25]
Aluminum oxide, porous 22% Porosity 2.3[24] Constant 1000-1773[24] This is number 54 on pages 73 and 76. Shakhtin, D.M. and Vishnevskii, I.I., 1957, interval 893-1773 Kelvins.[24]
Ammonia, saturated 0.507[13] 300[13]
Argon 0.016[6]-0.01772[19]-0.0179[19][26] 298[6][19]-300[19][26]
Beryllium oxide 218[17]-260[27]-300[27]
TPRC Recommended: 424[25]
302[25]
272[25]
196[25]
146[25]
111[25]
87[25]
70[25]
57[25]
47[25]
39[25]
33[25]
28.3[25]
24.5[25]
21.5[25]
19.5[25]
18.0[25]
16.7[25]
15.6[25]
15.0[25]
293[27]
200[25]
273.2[25]
300[25]
400[25]
500[25]
600[25]
700[25]
800[25]
900[25]
1000[25]
1100[25]
1200[25]
1300[25]
1400[25]
1500[25]
1600[25]
1700[25]
1800[25]
1900[25]
2000[25]
1×10^−12[27] Recommended values are found on page 137 of volume 2, TPRC Data Series, 1971,[25]
Bismuth 7.97[19] 300[19]
Brass Cu63% 125[28] 296[28] 15,150,000[28] - 16,130,000[28] (Cu63%, Zn37%)
Brass Cu70% 109[4][29] - 121[29] 293[4]-296[29] 12,820,000[29] - 16,130,000[29] (Cu70%, Zn30%)
Brick 0.15[4]-0.6[4]-0.69[6]-1.31[6]

British 2016:
Inner leaf (1700 kg/m3): 0.62[30]
Outer leaf (1700 kg/m3): 0.84[30]
1920s Values:
Brick #1: 0.674[25]
Brick #2: 0.732[25]
293[4]-298[6]





373.2[25]
373.2[25]
Brick #1: 76.32% SiO2, 21.96%Al2O3, 1.88%Fe2O3 traces of CaO and MgO, commercial brick, density 1.795 g ⋅ cm−3.
Brick #2: 76.52%SiO2, 13.67%Al2O3, 6.77%Fe2O3, 1.77%CaO, 0.42%MgO, 0.27%MnO, no specified density. Judging from the descriptions the TPRC has put the wrong labels on their bricks, and if that is the case then Brick #1 is "Common Brick" and Brick #2 is "Red Brick." Tadokoro, Y., Science Repts. Tohoku Imp. Univ., 10, 339-410, 1921, TPRC pages 493 & 1169.[25]
Bronze 26[16]
42[31]-50[15][31]
293[15]-296[31]
5,882,000[31] - 7,143,000[31]
Sn25%[16]
(Cu89%, Sn11%)[31]
Calcium silicate 0.063[32] 373[32]
Carbon dioxide 0.0146[6]-0.01465[33]-0.0168[26](sat. liquid 0.087[34]) 298[6]-273[33]-300[26](293[34])
Carbon nanotubes, bulk 2.5 (multiwall)[35] - 35 (single wall, disordered mats)[35] - 200(single wall, aligned mats)[35] 300[35] "bulk" refers to a group of nanotubes either arranged or disordered, for a single nanotube, see "carbon nanotube, single" .[35]
Carbon nanotube, single 3180 (multiwall)[36][37]-3500 (single wall)[38]
(SWcalc.6,600[36][39]-37,000[36][39])
320[36][37]-300[38]
(300[36][39]-100[36][39])
(Lateral)10−16[40] - (Ballistic)108[40]) values only for one single SWNT(length:2.6 μm, diameter:1.7 nm) and CNT. "Single", as opposed to "bulk" quantity (see "carbon nanotubes, bulk" ) of many nanotubes, which should not be confused with the denomination of nanotubes themselves which can be singlewall(SWNT) or multiwall(CNT)[35]
Cerium dioxide 1.70[41]
1.54[41]
1.00[41]
0.938[41]
0.851[41]
0.765[41]
1292.1[41]
1322.1[41]
1555.9[41]
1628.2[41]
1969.2[41]
2005.9[41]
Pears, C.D., Project director, Southern Res. Inst. Tech. Documentary Rept. ASD TDR-62-765, 20-402, 1963. TPRC Vol 2, pages 145, 146 and 1162[25]
Concrete 0.8[4] - 1.28[7] - 1.65 [42] - 2.5 [42] 293[7] ~61-67%CaO
Copper, commercial Wright, W.H., M.S. Thesis:
Sample 1
423
385
358
311
346
347
350
360
Sample 2
353
360
366
363
365
Lists[14]

Taga, M., periodical
First run: 378
Second run: 374
Third run: 378
Fourth run: 382
List[14]

80.06
95.34
115.62
135.53
159.46
181.56
198.35
217.30

198.53
220.90
240.88
257.38
275.40



363.2
363.2
363.2
363.2
Wright, W.H., M.S. Thesis, Georgia Institute of Technology, 1-225, 1960. TPRC Data Series Volume 1, pages 75, 80 and 1465.[14]

Taga, commercial grade, 99.82% purity, density 8.3 g⋅cm−3. Taga, M., [Bull?], Japan Soc. Mech. Engrs., 3 (11) 346-52, 1960. TPRC Data Series Vol 1, pages 74, 79 and 1459.[14]
Copper, pure 385[4]-386[15][16]-390[7]-401[6][19][43]
368.7[15]
353.1[15]
1970s values:
TPRC
2870
13800
19600
10500
4300
2050
1220
850
670
570
514
483
413
401
398
392
388
383
377
371
364
357
350
342
334
List[14]
The Soviet Union
403[44]
293[4][6][7][15][19][43]
573[15]
873[15]


1
5
10
20
30
40
50
60
70
80
90
100
200
273
300
400
500
600
700
800
900
1000
1100
1200
1300


273.15
59,170,000[43] - 59,590,000[20] International Annealed Copper Standard (IACS) pure =1.7×10−8Ω•m
=58.82×106Ω−1•m−1

For main article, see: Copper in heat exchangers.

The TPRC recommended values are for well annealed 99.999% pure copper with residual electrical resistivity of ρ0=0.000851 μΩ⋅cm. TPRC Data Series volume 1 page 81.[14]

The Soviet report did not specify anything about the purity of the material.

Cork 0.04[4] - 0.07[7]
1940s values:
Density=0.195 g cm−3 0.0381[25]
0.0446[25]
Density=0.104 g cm−3 0.0320[25]
0.0400[25]
293[7]
---
222.0[25]
305.5[25]
222.0[25]
305.5[25]
1940s values are for oven dried cork at specified densities: Rowley, F.B., Jordan, R.C. and Lander, R.M., Refrigeration Engineering, 53, 35-9. 1947, TPRC pages 1064, 1067 & 1161.[25]
Cotton or Plastic Insulation-foamed 0.03[6][7] 293[7]
Diamond, impure 1,000[4][45] 273[45] - 293[4] 1×10^−16~[46] Type I (98.1% of Gem Diamonds) (C+0.1%N)
Diamond, natural 2,200[47] 293[47] 1×10^−16~[46] Type IIa (99%12C and 1%13C)
Diamond, isotopically enriched 3,320[47]-41,000[36][48](99.999% 12C calc.200,000[48]) 293[47]-104[36][48](~80[48]) (Lateral)10−16[46] - (Ballistic)108[46] Type IIa isotopically enriched (>99.9%12C)
Epoxy, thermally conductive 0.682[49] - 1.038 - 1.384[50] - 4.8[51]
Expanded polystyrene - EPS 0.03[6]-0.033[4][6][45]((PS Only)0.1[52]-0.13[52]) 98[45]-298[6][45](296[52]) 1×10^−14[52] (PS+Air+CO2+CnH2n+x)
Extruded polystyrene - XPS 0.029 - 0.39 98-298
Fiberglass or Foam-glass 0.045[7] 293[7]
Gallium arsenide 56[45] 300[45]
Glass 0.8[4]-0.93[7](SiO2pure1[17]-SiO296%1.2[53]-1.4[53])
Corning Code 7740* 0.58[54]
0.90[54]
1.11[54]
1.25[54]
1.36[54]
1.50[54]
1.62[54]
1.89[54]
293[4][7][53]
100[54]
200[54]
300[54]
400[54]
500[54]
600[54]
700[54]
800[54]
10−14[55][56]-10−12[53]-10−10[55][56] <1% Iron oxides
*Corning Code 7740 is pyrex glass as known to the National Bureau of Standards in 1966 and at that time the composition was about 80.6% SiO2, 13% B2O3, 4.3% Na2O and 2.1% Al2O3.[54] Similar glasses have a coefficient of linear expansion of about 3 parts per million per Kelvin at 20°Celsius.[57]

Errata: The numbered references in the NSRDS-NBS-8 pdf are found near the end of the TPRC Data Book Volume 2 and not somewhere in Volume 3 like it says.[25]
Glycerol 0.285[13]-0.29[7] 300[13]-293[7]
Gold, pure 314[4]-315[15]-318[16][19][58]
1970s values:
444
885
2820
1500
345
327
318
315
312
309
304
298
292
285
List[14]
293[15]-298[19][58]

1
2
10
20
100
200
273.2
300
400
500
600
700
800
900

45,170,000[20] - 45,450,000[58] 1970s values are found on page 137, TPRC Data Series volume 1 (1970).[14]
Granite 1.73[59] - 3.98[59]
Nevada Granite: 1.78[25]
1.95[25]
1.86[25]
1.74[25]
1.80[25]
Scottish Granite: 3.39[25]
3.39[25]

368[25]
523[25]
600[25]
643[25]
733[25]
306.9[25]
320.2[25]
(72%SiO2+14%Al2O3+4%K2O etc.)

Scottish Granite: Nancarrow, H. A., Proc. Phys. Soc. (London). 45, 447-61, 1933, TPRC pages 818 and 1172.[25]
Nevada Granite: Stephens, D. R., USAEC UCRL-7605, 1-19, 1963, TPRC pages 818 and 1172.[25]
A 1960 report on the Nevada granite (Izett, USGS) is posted on the internet but the very small numbers there are hard to understand.[60]
Graphene (4840±440)[61] - (5300±480)[61] 293[61] 100,000,000[62]
Graphite, natural 25-470[63] 293[63] 5,000,000-30,000,000[63]
Helium II >100000[64] 2.2 liquid Helium in its superfluid state below 2.2 K
House American 2016

Wood Product Blow-in, Attic Insulation
0.0440 − 0.0448[65]
FIBERGLASTM Blow-in, Attic Insulation
0.0474 − 0.0531[66]
PINK FIBERGLASTM Flexible Insulation
0.0336 − 0.0459[67]

British

CONCRETE:
General 1.28[30]
(2300 kg/m3) 1.63[30]
(2100 kg/m3 typical floor) 1.40[30]
(2000 kg/m3 typical floor) 1.13[30]
(medium 1400 kg/m3) 0.51[30]
(lightweight 1200 kg/m3) 0.38[30]
(lightweight 600 kg/m3) 0.19[30]
(aerated 500 kg/m3) 0.16[30]

PLASTER:
(1300 kg/m3) 0.50[30]
(600 kg/m3) 0.16[30]

TIMBER:
Timber (650 kg/m3) 0.14[30]
Timber flooring (650 kg/m3) 0.14[30]
Timber rafters 0.13[30]
Timber floor joists 0.13[30]

MISC.:
Calcium silicate board (600 kg/m3) 0.17[30]
Expanded polystyrene 0.030 −0.038[30]
Plywood (950 kg/m3) 0.16[30]
Rock mineral wool 0.034 −0.042[30]

1960s Values

Dry Zero − Kapok between burlap or paper
density 0.016 g cm−3, TC=0.035 W⋅m−1K−1[68]

Hair Felt − Felted cattle hair
density 0.176 g cm−3, TC=0.037 W⋅m−1K−1[68]
density 0.208 g cm−3, TC=0.037 W⋅m−1K−1[68]

Balsam Wool − Chemically treated wood fibre
density 0.035 g cm−3, TC=0.039 W⋅m−1K−1[68]

Hairinsul − 50% hair 50% jute
density 0.098 g cm−3, TC=0.037 W⋅m−1K−1[68]

Rock Wool − Fibrous material made from rock
density 0.096 g cm−3, TC=0.037 W⋅m−1K−1[68]
density 0.160 g cm−3, TC=0.039 W⋅m−1K−1[68]
density 0.224 g cm−3, TC=0.040 W⋅m−1K−1[68]

Glass Wool − Pyrex glass curled
density 0.064 g cm−3, TC=0.042 W⋅m−1K−1[68]
density 0.160 g cm−3, TC=0.042 W⋅m−1K−1[68]

Corkboard − No added binder
density 0.086 g cm−3, TC=0.036 W⋅m−1K−1[68]
density 0.112 g cm−3, TC=0.039 W⋅m−1K−1[68]
density 0.170 g cm−3, TC=0.043 W⋅m−1K−1[68]
density 0.224 g cm−3, TC=0.049 W⋅m−1K−1[68]

Corkboard − with asphaltic binder
density 0.232 g cm−3, TC=0.046 W⋅m−1K−1[68]

Cornstalk Pith Board: 0.035 − 0.043[68]

Cypress
density 0.465 g cm−3, TC=0.097 W⋅m−1K−1[68]

White pine
density 0.513 g cm−3, TC=0.112 W⋅m−1K−1[68]

Mahogany
density 0.545 g cm−3, TC=0.123 W⋅m−1K−1[68]

Virginia pine
density 0.545 g cm−3, TC=0.141 W⋅m−1K−1[68]

Oak
density 0.609 g cm−3, TC=0.147 W⋅m−1K−1[68]

Maple
density 0.705 g cm−3, TC=0.159 W⋅m−1K−1[68]
American 2016: Flexible Insulation from Owens Corning includes faced and unfaced rolls of glass wool and with foil.[67]

1960s values: All thermal conductivities from Cypress to Maple are given across the grain.[68]
Hydrogen 0.1819[69] 290 Hydrogen gas at room temperature.
Ice 1.6[4]-2.1[7]-2.2[45]-2.22[70] 293[4][7] - 273[45][70]
Indium phosphide 80[45] 300[45]
Insulating Firebrick Sheffield Pottery, 2016:
NC-23 0.19[71]
0.20[71]
0.23[71]
0.26[71]
NC-26 0.25[71]
0.26[71]
0.27[71]
0.30[71]
NC-28 0.29[71]
0.32[71]
0.33[71]
0.36[71]
1940s Blast Furnace:
1.58[25]
1.55[25]
1.53[25]

533[71]
811[71]
1089[71]
1366[71]
533[71]
811[71]
1089[71]
1366[71]
533[71]
811[71]
1089[71]
1366[71]
---
636.2[25]
843.2[25]
1036.2[25]
Sheffield Pottery: Standard ASTM 155 Grades, 05/10/2006:
NC-23, Cold Crushing Strength=145 lbs/inch2, density=36 lbs/ft3
NC-26, Cold Crushing Strength=220 lbs/inch2, density=46 lbs/ft3
NC-28, Cold Crushing Strength=250 lbs/inch2, density=55 lbs/ft3
[71]
---
1940s Blast Furnace: Kolechkova, A. F. and Goncharov, V. V., Ogneupory, 14, 445-53, 1949, TPRC pages 488, 493 & 1161.[25]
Iron, pure 71.8[16]-72.7[15]-79.5[4]-80[6]-80.2[45]-80.4[19][72]
55.4[15]
34.6[15]

TPRC
149
224
297
371
442
513
580
645
705
997
814
555
372
265
204
168
146
132
94
83.5
80.3
69.4
61.3
54.7
48.7
43.3
38.0
32.6
29.7
29.9
27.9
28.2
29.9
30.9
31.8
List[14]

The Soviet Union
86.5[44]
293[4][15]-298[6]-300[19][45][72]
573[15]
1273[15]


2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
200
273.2
300
400
500
600
700
800
900
1000
1100
1183
1183
1200
1300
1400
1500



273.15
9,901,000[72] - 10,410,000[20] The TPRC recommended values are for well annealed 99.998% pure iron with residual electrical resistivity of ρ0=0.0327 μΩ⋅cm. TPRC Data Series volume 1 page page 169.[14]
Iron, cast 55[6][16] 298[6] (Fe+(2-4)%C+(1-3)%Si)
Lead, pure 34.7[4][15]-35.0[6][16]-35.3[19][73]
29.8[15]

TPRC
2770
4240
3400
2240
1380
820
490
320
230
178
146
123
107
94
84
77
66
59
50.7
47.7
45.1
43.5
39.6
36.6
35.5
35.2
33.8
32.5
31.2
List[14]

The Soviet Union
35.6[44]
293[4][15]-298[6]-300[19][73]
573[15]


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
20
25
30
40
50
100
200
273.2
300
400
500
600



273.15
4,808,000[20] - 4,854,000[73] The TPRC List is the TPRC estimate for well annealed Lead of 99.99+% purity and residual electrical resistivity ρ0=0.000880 μΩ cm. TPRC Data Series Volume 1, page 191.[14]

This material is superconductive (electrical) at temperatures below 7.193 Kelvins. Weast page E-87.[9]
Limestone 1.26[59] - 1.33[59]
Indiana Limestone 1.19[74]
1.21[74]
1.19[74]
1.11[74]
1.12[74]
1.07[74]
1.03[74]
0.62[74]
0.57[74]
0.54[74]
Queenstone Grey 1.43[25]
1.41[25]
1.40[25]
1.33[25]
----
472[74]
553[74]
683[74]
813[74]
952[74]
1013[74]
1075[74]
1181[74]
1253[74]
1324[74]
395.9[25]
450.4[25]
527.6[25]
605.4[25]
Mostly CaCO3 and the "Indiana Limestone" is 98.4% CaCO3, 1% quartz and 0.6% hematite.[74]
By comparison Queenstone Grey is a mixture of dolomite and calcite containing 22% MgCO2. Density=2.675 g cm−3. Niven, C.D., Can J. Research, A18, 132-7, 1940, TPRC pages 821 and 1170.[25]
Manganese 7.81[6] lowest thermal conductivity of any pure metal
Marble 2.07[59]-2.08[6]-2.94[6][59] 298[6]
Methane 0.030[6]-0.03281[75] 298[6]-273[75]
Mineral Insulation or Wool(Felt/Glass/Rock) 0.04[4][6][7] 293[7]-298[6]
Nickel 90.9[19]-91[6] 298[6][19]
Nitrogen, pure 0.0234[4]-0.024[6]-0.02583[19]-0.026[26][45] 293[4]-298[6]-300[19][26][45] (N2) (1 atm)
Oxygen, pure (gas) 0.0238[4]-0.024[6]-0.0263[26]-0.02658[19] 293[4]-298[6]-300[19][26] (O2) (1 atm)
Paper 0.05[6] 298[6]
Perlite, (1 atm) 0.031[6] 298[6]
Perlite in partial vacuum 0.00137[6] 298[6]
Pine 0.0886[25]
0.0913[25]
0.0939[25]
0.0966[25]
0.0994[25]
0.102[25]
222.0[25]
238.7[25]
255.4[25]
272.2[25]
288.9[25]
305.5[25]
Density=0.386 g cm−3. Rowley, F. B., Jordan, R. C. and Lander, R. M., Refrigeration Engineering, 53, 35-9, 1947, TPRC pages 1083 and 1161.[25]
Plastic, fiber-reinforced 0.23[76] - 0.7[76] - 1.06[7] 293[7] - 296[76] 10−15[76] - 100[76] 10-40%GF or CF
Polyethylene High Density 0.42[6] - 0.51[6] 298[6]
Polymer, High-Density 0.33[76] - 0.52[76] 296[76] 10−16[76] - 102[76]
Polymer, Low-density 0.04[76] - 0.16[7] - 0.25[7] - 0.33[76] 293[7] - 296[76] 10−17[76] - 100[76]
Polyurethane foam 0.02[6] - 0.021[6] 298[6]
Quartz−Single Crystal 12[45] to c axis, 06.8[45] to c axis
Rutgers University
11.1[77] to c axis, 5.88[77] to c axis
9.34[77] to c axis, 5.19[77] to c axis
8.68[77] to c axis, 4.50[77] to c axis
NBS
6.00[78] to c axis, 3.90[78] to c axis
5.00[78] to c axis, 3.41[78] to c axis
4.47[78] to c axis, 3.12[78] to c axis
4.19[78] to c axis, 3.04[78] to c axis
300[45]
------
311[77]
366[77]
422[77]
------
500[78]
600[78]
700[78]
800[78]
The noted authorities have reported some values in three digits as cited here in metric translation but they have not demonstrated three digit measurement.[79]

Errata: The numbered references in the NSRDS-NBS-8 pdf are found near the end of the TPRC Data Book Volume 2 and not somewhere in Volume 3 like it says.[25]
Quartz-Fused or Vitreous Silica or Fused Silica 1.46[80]-3[7]
1.4[45]
England 0.84[81]
1.05[81]
1.20[81]
1.32[81]
1.41[81]
1.48[81]
America 0.52[78]
1.13[78]
1.23[78]
1.40[78]
1.42[78]
1.50[78]
1.53[78]
1.59[78]
1.73[78]
1.92[78]
2.17[78]
2.48[78]
2.87[78]
3.34[78]
4.00[78]
4.80[78]
6.18[78]
293[7][80]
323[45]
123[81]
173[81]
223[81]
273[81]
323[81]
373[81]
100[78]
200[78]
223[78]
293[78]
323[78]
373[78]
400[78]
500[78]
600[78]
700[78]
800[78]
900[78]
1000[78]
1100[78]
1200[78]
1300[78]
1400[78]
1.333E-18[55] - 10−16[80]
Quartz-Slip Cast First Run 0.34[82]
0.39[82]
0.45[82]
0.51[82]
0.62[82]
Second Run 0.63[82]
0.66[82]
0.69[82]
500[82]
700[82]
900[82]
1100[82]
1300[82]
900[82]
1000[82]
1100[82]
This material which must have started out like unfired pottery was slip cast from fused silica. Then it was dried four days at 333 K before being tested. It was 9 inches in diameter and 1 inch thick, density 1.78 ⋅ cm−3. The first run went to 1317K and then on the second run the same insulator proved to be more conductive. 1959.[82]
Quartz-Powdered 0.178[83]
0.184[83]
0.209[83]
0.230[83]
0.259[83]
373.2[83]
483.2[83]
588.2[83]
673.2[83]
723.2[83]
In the particular case the powdered quartz has been roughly competitive with insulating firebrick. The noted grain sizes ranged from 0.3 to 1 mm diameter and the density was 0.54 grams ⋅ cm−3. Kozak, M.I. Zhur. Tekh. Fiz., 22 (1), 73-6, 1952. Reference No. 326, page 1166.[83][25]
Redwood Bark Whole: Density=0.0641 g cm−3: 0.0286[25]
0.0307[25]
0.0330[25]
0.0356[25]
0.0379[25]
0.0407[25]
Shredded: Density=0.0625 g cm−3: 0.0107[25]
222.2[25]
239.2[25]
255.5[25]
272.1[25]
288.8[25]
305.3[25]
318.7[25]
Whole: Rowley, F. B., Jordan, R. C. and Lander, R. M., Refrig. Eng., 50, 541-4, 1945, TPRC pages 1084 & 1172.[25]
Shredded: Wilkes, G. B., Refrig. Eng., 52, 37-42, 1946, TPRC pages 1084 & 1162.[25]
Rice hulls (ash) 0.062[84]
Rice hulls (whole) 0.0359[84]
Rubber (92%) 0.16[45] 303[45] 1×10^−13~[55]
Sandstone 1.83[59] - 2.90[59]
2.1[85] - 3.9[85]
~95-71%SiO2
~98-48%SiO2, ~16-30% Porosity
Silica Aerogel 0.003[45](carbon black9%~0.0042[86])-0.008[86]-0.017[86]-0.02[6]-0.03[45] 98[45] - 298[6][45] Foamed Glass
Silver, pure 406[4]-407[15]-418[16]
427[17]-429[6][19][45][87]-430[19]
1970s values:
TPRC
3940
7830
17200
16800
5100
1930
1050
700
550
497
471
460
450
432
430
428
427
420
413
405
397
389
382
List[14]
The Soviet Union
429[44]
293[4][15]
298[6][19][87]-300[19][45]


1
2
5
10
20
30
40
50
60
70
80
90
100
150
200
273.2
300
400
500
600
700
800
900


273.15
61,350,000[87] - 63,010,000[20] Highest electrical conductivity of any metal

TPRC recommended values are for well annealed 99.999% pure silver with residual electrical resistivity of ρ0=0.000620 μΩ⋅cm. TPRC Data Series volume 1 page 348 (1970).[14]
Silver, sterling 361[88]
Snow, dry 0.05[6]-0.11[4]-0.25[6] 273[6]
Sodium chloride 35.1 - 6.5 - 4.85[89] 80 - 289 - 400[89]
Soil, dry w/ organic matter 0.15[7][90]-1.15[90]-2[7] 293[7] composition may vary
Soil, saturated 0.6[7]-4[7] 293[7] composition may vary
Soils, 1950s Values Mineral; density 2.65 g cm−3: 2.93[91]
Organic; density 1.3 g cm−3: 0.251[91]
Soil, mineral, dry; density 1.50 g cm−3: 0.209[91]
Soil, mineral, saturated; density 1.93 g cm−3: 2.09[91]
Soil, organic, dry; density 0.13 g cm−3: 0.0335[91]
Soil, organic, sat.; density 1.03 g cm−3: 0.502[91]
293.2[91] The TPRC Data Book has been quoting de Vries with values of 0.0251 and 0.0109 W⋅cm−3⋅Kelvin−1 for the thermal conductivities of organic and dry mineral soils respectively but the original article is free at the website of their cited journal. Errors: TPRC Volume 2 pages 847 and 1159.[25] Journal archives.[91]
Solder, Sn/63% Pb/37% 50[92]
Lead free solder, Sn/95.6% Ag/3.5% Cu/0.9%, Sn/95.5% Ag/3.8% Cu/0.7% (SAC) ~60[92]
Steel, carbon 36[15][16]-43[6] 50.2[4]-54[6][15][16] 293[4][15]-298[6] (Fe+(1.5-0.5)%C)
Steel, stainless 16.3[16][93]-16.7[94]-18[95]-24[95] 296[93][94][95] 1,176,000[94] - 1,786,000[95] (Fe, Cr12.5-25%, Ni0-20%, Mo0-3%, Ti0-trace)
Styrofoam-Expanded Polystyrene Dow Chemical 0.033-0.036[96]
K. T. Yucel et al. 0.036-0.046[97]
Thermal grease 0.4 - 3.0[citation needed]
Thermal tape 0.60[98]
Thorium dioxide 3.68[25]
3.12[25]
2.84[25]
2.66[25]
2.54[25]
1000[25]
1200[25]
1400[25]
1600[25]
1800[25]
Recommended values, TPRC, Polycrystaline, 99.5% pure, 98% dense, page 198[25]
Tin TPRC
20400to the c axis, 14200 to the c axis, 18300 P
36000to the c axis, 25000 to the c axis, 32300 P
33100to the c axis, 23000 to the c axis, 29700 P
20200to the c axis, 14000 to the c axis, 18100 P

13000to the c axis, 9000 to the c axis, (11700) P

8500to the c axis, 5900 to the c axis, (7600) P
5800to the c axis, 4000 to the c axis, (5200) P
4000to the c axis, 2800 to the c axis, (3600) P
2900to the c axis, 2010 to the c axis, (2600) P

2150to the c axis, 1490 to the c axis, (1930) P

1650to the c axis, 1140 to the c axis, (1480) P
1290to the c axis, 900 to the c axis, (1160) P
1040to the c axis, 720 to the c axis, (930) P
850to the c axis, 590 to the c axis, (760) P

700to the c axis, 490 to the c axis, (630) P

590to the c axis, 410 to the c axis, (530) P
450to the c axis, 310 to the c axis, (400) P
360to the c axis, 250 to the c axis, (320) P
250to the c axis, 172 to the c axis, (222) P

200to the c axis, 136* to the c axis, (176) P

167to the c axis, 116 to the c axis, (150) P
(150)to the c axis, (104) to the c axis, (133) P
(137)to the c axis, (95) to the c axis, (123) P
(128)to the c axis, (89) to the c axis, (115) P

(107)to the c axis, (74) to the c axis, (96) P
(98.0)to the c axis, (68.0) to the c axis, (88.0) P
(95.0)to the c axis, (66.0) to the c axis, (85.0) P
(86.7)to the c axis, (60.2) to the c axis, (77.9) P

(81.6)to the c axis, (56.7) to the c axis, (73.3) P

(75.9)to the c axis, (52.7) to the c axis, 68.2 P
(74.2)to the c axis, (51.5) to the c axis, 66.6 P
69.3to the c axis, 48.1 to the c axis, 62.2 P
66.4to the c axis, 46.1 to the c axis, 59.6 P
List[14]

The Soviet Union
68.2[44]

1
2
3
4

5

6
7
8
9

10

11
12
13
14

15


16
18
20
25

30

35
40
45
50

70
90
100
150

200

273.2
300
400
500



273.15
TPRC Tin is well annealed 99.999+% pure white tin with residual electrical resistivity ρ0=0.000120, 0.0001272 & 0.000133 μΩ cm respectively for the single crystal along directions perpendicular and parallel to the c axis and for polycrystalline tin P. The recommended values are thought to be accurate to within 3% near room temperature and 3 to [unintelligible] at other temperatures. Values in parenthesis are extrapolated, interpolated, or estimated.

*It happens that the online record has the thermal conductivity at 30 Kelvins and to the c axis posted at 1.36 W⋅cm−1 K−1 and 78.0 Btu hr−1 ft−1 F−1 which is incorrect. Also the copy is blurred up enough to give you the impression that maybe what it really means is 1.36 W−1 cm−1 K−1 and 78.6 Btu hr−1 ft−1 F−1 and a type-head that got overdue for its cleaning since the secretary had a tall heap of papers on her desk and if that is the case then the multilingual expression is perfectly consistent. TPRC Data Series Volume 1, page 408.[14]

This material is superconductive (electrical) at temperatures below 3.722 Kelvins. Weast page E-75.[9]
Titanium, pure 15.6[16]-19.0[15]-21.9[19][99]-22.5[15] 293[15]-300[19][99] 1,852,000[99] - 2,381,000[20]
Titanium Alloy 5.8[100] 296[100] 595,200[100] (Ti+6%Al+4%V)
Tungsten, Pure 173[46] 293[46] 18,940,000[46]
Water 0.563[101]-0.596[101]-0.6[4][7]-0.609[13]

TPRC
0.5225*
0.5551*
0.5818
0.5918
0.6084
0.6233
0.6367
0.6485
0.6587
0.6673
0.6797
0.6864
0.6727
0.6348
0.5708
List[102]

The Soviet Union
0.599[44]
273[101]-293[4][7][101]-300[13]


250
270
280
290
300
310
320
330
340
350
370
400
450
500
550



293.15
Pure10−6[46]-Sweet10−3±1[46]-Sea1[101] <4[101]%(NaCl+MgCl2+CaCl2)

*The TPRC Estimates for water at 250K and 270K are for supercooled liquid. Of course the values for 400K and above are for water under steam pressure.[102]
Wallboard (1929) 0.0640[25]
0.0581[25]
0.0594[25]
0.0633[25]
322.8[25] Stiles, H., Chem. Met. Eng., 36, 625-6, 1929, TPRC pages 1131 and 1172.[25]
Water vapor 0.016[6]-0.02479 (101.3 kPa)[103]
0.0471 (1 bar)[8]
293[103]-398[6]
600[8]
Wood, moist +>=12% water: 0.09091[104]-0.16[45]-0.21[104]-0.4[7]
The Royal Society:
Fir, 15%, ⊥ to the grain: 0.117[25]
Mahogany, 15%, ⊥ to the grain: 0.167[25]
⊥ to the grain: 0.155[25]
Oak, 14%, ⊥ to the grain: 0.117[25]
Spruce: ⊥ to the grain: 3.40%: 0.122[25]
⊥ to the grain: 5.80%: 0.126[25]
⊥ to the grain: 7.70%: 0.129[25]
⊥ to the grain: 9.95%: 0.133[25]
⊥ to the grain: 17.0%: 0.142[25]
to the grain: 16%: 0.222[25]
298[45]-293[7]

293.2[25]
293.2[25]
293.2[25]
293.2[25]
373.2[25]
373.2[25]
373.2[25]
373.2[25]
373.2[25]
293.2[25]
Species-Variable[104]

The Royal Society: Griffiths, E. and Kaye, G. W. C., Proc. Roy. Soc. (London), A104, 71-98, 1923, TPRC pages 1073, 1080, 1082, 1086 and 1162.[25]

Re: Reference No 7: Maple in particular has been measured at more than 0.4⋅W m−1K−1 parallel to the grain. Density 0.72. TPRC Volume 2, page 1081 (1920)[25]
Wood, oven-dry 0.04[4]-0.055[6]-0.07692[104]-0.12[4]-0.17[6][104] 293[4]-298[6] Balsa[6]-Cedar[104]-Hickory[104]/Oak[6]
Wool, Angora Wool 0.0464[25] 293.2[25] Bettini, T. M., Ric. Sci. 20 (4), 464-6, 1950, TPRC pages 1092 and 1172[25]
Wool felt 0.0623[25]
0.0732[25]
313.2[25]
343.2[25]
Taylor, T. S., Mech. Eng., 42, 8-10, 1920, TPRC pages 1133 and 1161.[25]
Zinc, Pure 116[46] 293[46] 16,950,000[46]
Zinc oxide 21[17]
Zirconium dioxide Slip Cast, first run (1950) 2.03[25]
1.98[25]
1.96[25]
1.91[25]
1.91[25]
1.90[25]
Second Run (1950) 1.81[25]
1.80[25]
1.92[25]
1.90[25]
1.95[25]
1.92[25]
1.97[25]
1.98[25]
2.04[25]
2.29[25]
CaO stabilized (1964) 1.54[25]
1.64[25]
1.64[25]
1.76[25]
1.62[25]
1.79[25]
1.80[25]
2.46[25]
2.33[25]
2.80[25]
2.56[25]
2.70[25]
766.2[25]
899.2[25]
1006.2[25]
1090.2[25]
1171.2[25]
1233.2[25]
386.2[25]
470.2[25]
553.2[25]
632.2[25]
734.2[25]
839.2[25]
961.2[25]
1076.2[25]
1163.2[25]
1203.2[25]
1343.2[25]
1513.2[25]
1593.2[25]
1663.2[25]
1743.2[25]
2003.2[25]
2103.2[25]
2323.2[25]
2413.2[25]
2413.2[25]
2493.2[25]
2523.2[25]
First Run: Density=5.35 g cm−3. Norton, F. H., Kingery, W. D., Fellows, D. M., Adams, M., McQuarrie, M. C. and Coble, R. L. USAEC Rept. NYO-596, 1-9, 1950, TPRC pages 247 and 1160[25]

Second Run: Same Specimen, same USAEC Report.[25]

CaO stabilized: Density=4.046 g cm−3 (66.3% of theoretical). Feith, A. D., Gen. Elec. Co., Adv. Tech. Service, USAEC Rept. GEMP-296, 1-25, 1964, TPRC pages 247 and 1165[25]
Material Thermal conductivity [W·m−1·K−1] Temperature [K] Electrical conductivity @ 293 K [Ω−1·m−1] Notes

See also[edit]

References[edit]

  1. ^ Roger N. Wright (3 December 2010). "Wire Technology: Process Engineering and Metallurgy". Elsevier: 281. ISBN 978-0-12-382093-8{{inconsistent citations}} 
  2. ^ a b c d e http://www.goodfellow.com/E/Polymethylmethacrylate.html
  3. ^ http://www.plexiglas.com/tds/4b.pdf
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am HyperPhysics, most from Young, Hugh D., University Physics, 7th Ed., Addison Wesley, 1992. Table 15-5. (most data should be at 293 K (20 °C; 68 °F))
  5. ^ a b http://www.engineeringtoolbox.com/air-properties-d_156.html
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar Hukseflux Thermal Sensors
  8. ^ a b c d e f "Thermal conductivity of gases", CRC Handbook, p. 6–195.
  9. ^ a b c d e f g h i j k l Weast, Robert C., Editor-in chief, Handbook of Chemistry and Physics, 48th Edition, 1967-1968, Cleveland: The Chemical Rubber Co., 1967.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x Lasance, Clemens J., "The Thermal Conductivity of Air at Reduced Pressures and Length Scales," Electronics Cooling, November 2002, http://www.electronics-cooling.com/2002/11/the-thermal-conductivity-of-air-at-reduced-pressures-and-length-scales/ Retrieved 05:20, 10 April 2016 (UTC).
  11. ^ a b Pawar, S. D.; Murugavel, P.; Lal, D. M. (2009). "Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean". Journal of Geophysical Research 114: D02205. Bibcode:2009JGRD..11402205P. doi:10.1029/2007JD009716. 
  12. ^ tf technifab at https://technifab.com/cryogenic-resource-library/cryogenic-thermodynamics/cryogenic-insulation/. Retrieved 11:40 PM on Monday April 11, 2016 (UTC).
  13. ^ a b c d e f g h i http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html
  14. ^ a b c d e f g h i j k l m n o p q r s Touloukian, Powell, Ho and Klemens, Purdue Research Foundation, TPRC Data Series Volume 1 (1970): http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951935. Retrieved 9:30 AM April 13, 2016 (UTC).
  15. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah http://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html
  16. ^ a b c d e f g h i j k l m http://www.engineersedge.com/properties_of_metals.htm
  17. ^ a b c d e f g Greg Becker; Chris Lee & Zuchen Lin (July 2005). "Thermal conductivity in advanced chips — Emerging generation of thermal greases offers advantages". Advanced Packaging: 2–4. Retrieved 2008-03-04. 
  18. ^ a b c http://www.goodfellow.com/E/Aluminium.html
  19. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Thermal conductivities of the elements (data page)
  20. ^ a b c d e f g Electrical resistivities of the elements (data page)
  21. ^ a b c d http://www.goodfellow.com/E/AluminiumNitride'.html
  22. ^ a b c d http://www.goodfellow.com/E/Alumina.html
  23. ^ a b c Alumina (Al2O3) - Physical, Mechanical, Thermal, Electrical and Chemical Properties - Supplier Data by Ceramaret
  24. ^ a b c d e f g h i j k l m n o p q r s t u v w x R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, pages 73-83>Link Text
  25. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu fv fw fx fy fz ga gb gc gd ge gf gg gh gi gj gk gl gm gn go gp gq gr gs gt gu gv gw gx gy gz ha hb hc hd he hf hg hh hi hj hk hl hm hn ho hp hq hr hs ht hu hv hw hx hy hz ia ib ic id ie if ig ih ii ij ik il im in io ip iq ir is it iu iv iw ix iy iz ja jb jc jd je jf jg jh ji jj jk jl Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. Thermophysical and Electronic Properties Information and Analysis Center Lafayette In, TPRC Data Series Volume 2, (1971)>PDF at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936
  26. ^ a b c d e f g h http://www.engineersedge.com/heat_transfer/thermal-conductivity-gases.htm
  27. ^ a b c d http://www.goodfellow.com/E/Beryllia.html
  28. ^ a b c d http://www.goodfellow.com/E/Brass.html
  29. ^ a b c d e http://www.goodfellow.com/E/Brass'.html
  30. ^ a b c d e f g h i j k l m n o p q r s t Leeds Beckett University, Virtual Maths: http://www.virtualmaths.org/activities/topic_data-handling/heatloss/resources/thermal-conductivity-of-building-materials.pdf. Retrieved March 29, 2016 at 11:12 PM (UTC).
  31. ^ a b c d e f http://www.goodfellow.com/E/Bronze.html
  32. ^ a b http://www.engineeringtoolbox.com/calcium-silicate-insulation-k-values-d_1171.html
  33. ^ a b http://encyclopedia.airliquide.com/encyclopedia.asp?GasID=26
  34. ^ a b http://www.engineeringtoolbox.com/carbon-dioxide-d_1000.html
  35. ^ a b c d e f "Carbon nanotubes : Reinforced metal matrix composites" by A.Agarwal, S.R.Bakshi and D.Lahiri, CRC Press, 2011 (ch.1, p.8, chart 1.1 : physical properties of carbon materials )
  36. ^ a b c d e f g h "Carbon Nanotubes: Thermal Properties" (PDF). Retrieved 2009-06-06. 
  37. ^ a b Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L.; et al. (2001-06-01). "Thermal transport measurements of individual multiwalled nanotubes". Physical Review Letters 87 (21): 215502–215506. arXiv:cond-mat/0106578. Bibcode:2001PhRvL..87u5502K. doi:10.1103/PhysRevLett.87.215502. PMID 11736348. 
  38. ^ a b Pop, Eric; Mann, David; Wang, Qian; Goodson, Kenneth; Dai, Hongjie; et al. (2005-12-22). "Thermal conductance of an individual single-wall carbon nanotube above room temperature". Nano Letters 6 (1): 96–100. arXiv:cond-mat/0512624. Bibcode:2006NanoL...6...96P. doi:10.1021/nl052145f. PMID 16402794. 
  39. ^ a b c d Berber, Savas; Kwon, Young-Kyun; Tománek, David (2000-02-23). "Unusually high thermal conductivity of carbon nanotubes". Physical Review Letters 84 (20): 4613–4616. arXiv:cond-mat/0002414. Bibcode:2000PhRvL..84.4613B. doi:10.1103/PhysRevLett.84.4613. PMID 10990753. 
  40. ^ a b Li, Qingwen; Li, Yuan; Chikkannanavar, S. B.; Zhao, Y. H.; Dangelewicz, A. M.; Zheng, L. X.; Doorn, S. K.; et al. (2007). "Structure-Dependent Electrical Properties of Carbon Nanotube Fibers". Advanced Materials 19 (20): 3358–3363. doi:10.1002/adma.200602966. 
  41. ^ a b c d e f g h i j k l Pears, C.D. in Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. Thermophysical and Electronic Properties Information and Analysis Center Lafayette In, TPRC Data Series Volume 2, (1971) pages 145-6, Reference No. 144, page 1162>PDF at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936. Retrieved 29 March 2016 at 10:05 PM (UTC).
  42. ^ a b International Standard EN-ISO 10456:2007 'Building materials and products - Hygrothermal properties - Tabulated design values and procedures for determining declared and design thermal values'
  43. ^ a b c http://www.goodfellow.com/E/Copper.html
  44. ^ a b c d e f Great Soviet Encyclopedia, 3rd Edition (Moscow 1976) in English Translation, New York: Macmillian Inc., 1980, volume 25 page 593.
  45. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad CRC handbook of chemistry and physics[verification needed](subscription required)(HTTP cookies required)
  46. ^ a b c d e f g h i j k l Other references listed within Wikipedia (this table may not be cited, pure elements are sourced from Chemical elements data references, otherwise an in-table linked-page must list the relevant references) Cite error: Invalid <ref> tag; name "Wikipedia" defined multiple times with different content (see the help page). Cite error: Invalid <ref> tag; name "Wikipedia" defined multiple times with different content (see the help page). Cite error: Invalid <ref> tag; name "Wikipedia" defined multiple times with different content (see the help page).
  47. ^ a b c d Anthony, T. R.; Banholzer, W. F.; Fleischer, J. F.; Wei, Lanhua; Kuo, P. K.; Thomas, R. L.; Pryor, R. W. (1989-12-27). "Thermal conductivity of isotopically enriched 12C diamond". Physical Review B 42 (2): 1104–1111. Bibcode:1990PhRvB..42.1104A. doi:10.1103/PhysRevB.42.1104. 
  48. ^ a b c d Wei, Lanhua; Kuo, P. K.; Thomas, R. L.; Anthony, T. R.; Banholzer, W. F. (1993-02-16). "Thermal conductivity of isotopically modified single crystal diamond". Physical Review Letters 70 (24): 3764–3767. Bibcode:1993PhRvL..70.3764W. doi:10.1103/PhysRevLett.70.3764. PMID 10053956. 
  49. ^ "MG 832TC Thermally Conductive Epoxy". 
  50. ^ "OMEGABOND OB-100/101/200 Thermally Conductive Epoxies" (PDF). 
  51. ^ Timothy W. Tong (8 June 1994). Thermal Conductivity 22. CRC. p. 718. ISBN 978-1-56676-172-7. 
  52. ^ a b c d http://www.goodfellow.com/E/Polystyrene.html
  53. ^ a b c d http://www.goodfellow.com/E/Silica.html
  54. ^ a b c d e f g h i j k l m n o p q [R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, November 25, 1966, pp. 67, 68, and 89. http://www.nist.gov/data/nsrds/NSRDS-NBS-8.pdf Link text]
  55. ^ a b c d Serway, Raymond A. (1998). Principles of Physics (2nd ed.). Fort Worth, Texas; London: Saunders College Pub. p. 602. ISBN 0-03-020457-7. 
  56. ^ a b Griffiths, David (1999) [1981]. "7. Electrodynamics". In Alison Reeves (ed.). Introduction to Electrodynamics (3rd ed.). Upper Saddle River, New Jersey: Prentice Hall. p. 286. ISBN 0-13-805326-X. OCLC 40251748. 
  57. ^ T.M.Yarwood & F. Castle, Physical and Mathematical Tables, Glascow: The University Press, 1970 page 38.
  58. ^ a b c http://www.goodfellow.com/E/Gold.html
  59. ^ a b c d e f g h Marble Institute of America (2 values are usually given: the highest and lowest test scores)
  60. ^ Izett, G. A., "Granite" Exploration Hole, Area 15, Nevada Test Site, NYE County, Nevada -- Interim Report, Part C, Physical Properties, January 1960>http://www.pubs.usgs.gov/tem/0836c.pdf
  61. ^ a b c Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong; Calizo, Irene; Teweldebrhan, Desalegne; Miao, Feng; Lau, Chun Ning; et al. (2008-02-20). "Superior Thermal Conductivity of Single-Layer Graphene". Nano Letters ASAP 8 (3): 902–907. Bibcode:2008NanoL...8..902B. doi:10.1021/nl0731872. PMID 18284217. 
  62. ^ Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene
  63. ^ a b c Properties of Graphite
  64. ^ Clifford A. Hampel (1968). The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. pp. 256–268. ISBN 0-442-15598-0. 
  65. ^ Green Fiber Blow-in Attic Insulation at Home Depot 2016>http://www.homedepot.com/catalog/pdfImages/1d/1dcde6e6-eb26-47e1-8223-5f3cc1840add.pdf. Retrieved March 29, 2016 at 11:08 PM (UTC).
  66. ^ Owens Corning, AttiCat, Product Data Sheet: http://insulation.owenscorning.com/assets/0/428/429/431/af2a2cae-f7c3-43bd-8e88-9313ed87dd2d.pdf. Retrieved March 29, 2016 at 11:10 PM (UTC).
  67. ^ a b Owens Corning, EcoTouch Product Data Sheet: http://insulation.owenscorning.com/assets/0/428/429/431/b507cdf1-d1f4-4e08-930f-9d5e88c6b6ce.pdf. Retrieved March 29, 2016 at 11:11 PM (UTC).
  68. ^ a b c d e f g h i j k l m n o p q r s t u v w Bureau of Standards Letter Circular No. 227, nd., in Weast, R. C., Editor-in Chief, Handbook of Chemistry and Physics, 48th Edition, 1967-68, Cleveland: The Chemical Rubber Co., 1967, page E-5.
  69. ^ M. J. Assael, S. Mixafendi, W. A. Wakeham (1 July 1986). "The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density" (PDF). NIST. Retrieved 2 April 2015. 
  70. ^ a b http://www.engineeringtoolbox.com/ice-thermal-properties-d_576.html
  71. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Sheffield Pottery,Link Text
  72. ^ a b c http://www.goodfellow.com/E/Iron.html
  73. ^ a b c http://www.goodfellow.com/E/Lead.html
  74. ^ a b c d e f g h i j k l m n o p q r s t u Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. Thermophysical and Electronic Properties Information and Analysis Center Lafayette In, TPRC Data Series Volume 2, (1971) pages 820-822>PDF at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936
  75. ^ a b http://encyclopedia.airliquide.com/Encyclopedia.asp?GasID=41
  76. ^ a b c d e f g h i j k l m n o http://www.goodfellow.com/Home.aspx?LangType=2057
  77. ^ a b c d e f g h i [Engineering Research Bulletin No. 40, Rutgers University (1958) quoted by Weast, R.C., Editor-in-Chief, Handbook of Chemistry and Physics, 48th edition, Cleveland: The Chemical Rubber Publishing Co. 1967-1968, page E-5.]
  78. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, page 99>Link Text
  79. ^ R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, pages 69, 99>Link Text
  80. ^ a b c http://www.goodfellow.com/E/Quartz-Fused.html
  81. ^ a b c d e f g h i j k l [Ratcliffe, E.H., National Physical Laboratory, Teddington, Middlesex, England, quoted by Weast, R.C. Editor-in-Chief, Handbook of Chemistry and Physics, 48th edition, 1967-1968, Cleveland: Chemical Rubber Publishing Co., page E6.]
  82. ^ a b c d e f g h i j k l m n o p q Mason, C.R., Walton, J.D., Bowen, M.D. and Teague, W.T. (1959) in R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, pages 99, 103>Link Text
  83. ^ a b c d e f g h i j k Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. Thermophysical and Electronic Properties Information and Analysis Center Lafayette In, TPRC Data Series Volume 2, (1971) pages 177-180>PDF at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936
  84. ^ a b http://esrla.com/pdf/ricehullhouse.pdf
  85. ^ a b http://edoc.gfz-potsdam.de/gfz/get/15306/0/69070f5918278d63d23cfce5cbad024a/15306.pdf
  86. ^ a b c http://energy.lbl.gov/ECS/aerogels/sa-thermal.html Thermal Properties - Silica Aerogels
  87. ^ a b c http://www.goodfellow.com/E/Silver.html
  88. ^ S. Vandana (1 December 2002). "Alternative Energy". APH: 45. ISBN 978-81-7648-349-0{{inconsistent citations}} 
  89. ^ a b http://www.almazoptics.com/NaCl.htm
  90. ^ a b Soil Sci Journals
  91. ^ a b c d e f g h de Vries, D. A. and Peck, A. J., "On the Cylindrical Probe Method of Measuring Thermal Conductivity With Special Reference to Soils. I. Extension of Theory and Discussion of Probe Characteristics," Australian Journal of Physics, 11 (2), [pp 255-71] page 262, 1958> http://www.publish.csiro.au/?act=view_file&file_id=PH580255.pdf. Retrieved 29 March 2016 at 9:17 PM (UTC).
  92. ^ a b "Thermal Conductivity-of Solders". 
  93. ^ a b http://www.goodfellow.com/E/Stainless-Steel-AISI-302.html
    http://www.goodfellow.com/E/Stainless-Steel-AISI-304.html
    http://www.goodfellow.com/E/Stainless-Steel-AISI-310.html
    http://www.goodfellow.com/E/Stainless-Steel-AISI-316.html
    http://www.goodfellow.com/E/Stainless-Steel-AISI-321.html
  94. ^ a b c http://www.goodfellow.com/E/Stainless-Steel-17-7PH.html
  95. ^ a b c d http://www.goodfellow.com/E/Stainless-Steel-AISI-410.html
  96. ^ http://building.dow.com/eu/gbr/en/products/styrofoam/thermalresistance.htm />
  97. ^ Yucel, K. T., Basyigit, C. and Ozel, Suleyman Demirel University, Isparta, Turkey, "Thermal Insulation Properties of Expanded Polystyrene as Construction and Insulating Materials," nd. 21st Century http://zenonpanel.com.mk/al/wp-content/uploads/2009/06/Thermal-Insulation-properties.PDF
  98. ^ "3M™ Thermally Conductive Adhesive Transfer Tape 8805". 3M. 2015. 
  99. ^ a b c http://www.goodfellow.com/E/Titanium.html
  100. ^ a b c http://www.goodfellow.com/E/Titanium-Aluminium-Vanadium.html
  101. ^ a b c d e f "2.7.9 Physical properties of sea water". Kaye and Laby - National Physical Laboratory. Retrieved 2010-01-25.  External link in |publisher= (help)
  102. ^ a b Touloukian, Powell, Ho and Klemens, Purdue Research Foundation, TPRC Data Series Volume 3 (1970):http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951937. Retrieved at about 11:00PM April 19, 2016 (UTC).
  103. ^ a b "Thermal conductivity of saturated H2O and D2O, CRC Handbook, p. 6–4.
  104. ^ a b c d e f g "Physical Properties and Moisture Relations of Wood" (PDF). 

External links[edit]