Lithium iodide

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Lithium iodide
Lithium iodide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.735
UNII
Properties
LiI
Molar mass 133.85 g/mol
Appearance White crystalline solid
Density 4.076 g/cm3 (anhydrous)
3.494 g/cm3 (trihydrate)
Melting point 469 °C (876 °F; 742 K)
Boiling point 1,171 °C (2,140 °F; 1,444 K)
1510 g/L (0 °C)
1670 g/L (25 °C)
4330 g/L (100 °C) [1]
Solubility soluble in ethanol, propanol, ethanediol, ammonia
Solubility in methanol 3430 g/L (20 °C)
Solubility in acetone 426 g/L (18 °C)
−50.0·10−6 cm3/mol
1.955
Thermochemistry
0.381 J/g K or 54.4 J/mol K
75.7 J/mol K
-2.02 kJ/g or −270.48 kJ/mol
-266.9 kJ/mol
Hazards
Safety data sheet External MSDS
Flash point Non-flammable
Related compounds
Other anions
Lithium fluoride
Lithium chloride
Lithium bromide
Lithium astatide
Other cations
Sodium iodide
Potassium iodide
Rubidium iodide
Caesium iodide
Francium iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Lithium iodide, or LiI, is a compound of lithium and iodine. When exposed to air, it becomes yellow in color, due to the oxidation of iodide to iodine.[2] It crystallizes in the NaCl motif.[3] It can participate in various hydrates.[4]

Applications[edit]

LiI chains grown inside double-wall carbon nanotubes.[5]

Lithium iodide is used as an electrolyte for high temperature batteries. It is also used for long life batteries as required, for example, by artificial pacemakers. The solid is used as a phosphor for neutron detection.[6] It is also used, in a complex with Iodine, in the electrolyte of dye-sensitized solar cells.

In organic synthesis, LiI is useful for cleaving C-O bonds. For example, it can be used to convert methyl esters to carboxylic acids:[7]

RCO2CH3 + LiI → RCO2Li + CH3I

Similar reactions apply to epoxides and aziridines.

Lithium iodide was used as a radio contrast agent for X-ray computed tomography imaging studies. Its use was discontinued due to renal toxicity, replaced by organic iodine molecules. Inorganic iodine solutions suffered from hyperosmolarity and high viscosities.[8]

See also[edit]

References[edit]

  1. ^ Patnaik, Pradyot (2002) Handbook of Inorganic Chemicals. McGraw-Hill, ISBN 0-07-049439-8
  2. ^ "Lithium iodide" (PDF). ESPI Corp. MSDS. 
  3. ^ Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  4. ^ Wietelmann, Ulrich and Bauer, Richard J. (2005) "Lithium and Lithium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim. doi:10.1002/14356007.a15_393.
  5. ^ Senga, Ryosuke; Suenaga, Kazu (2015). "Single-atom electron energy loss spectroscopy of light elements". Nature Communications. 6: 7943. PMC 4532884Freely accessible. PMID 26228378. doi:10.1038/ncomms8943. 
  6. ^ Nicholson, K. P.; et al. (1955). "Some lithium iodide phosphors for slow neutron detection". Br. J. Appl. Phys. 6 (3): 104–106. doi:10.1088/0508-3443/6/3/311. 
  7. ^ Charette, André B.; Barbay, J. Kent and He, Wei (2005) "Lithium Iodide" in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons. doi:10.1002/047084289X.rl121.pub2
  8. ^ Lusic, Hrvoje; Grinstaff, Mark W. (2013). "X-ray-Computed Tomography Contrast Agents". Chemical Reviews. 113 (3): 1641. PMC 3878741Freely accessible. PMID 23210836. doi:10.1021/cr200358s. 

External links[edit]