Lithium molybdate

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Lithium molybdate
3D model (JSmol)
ECHA InfoCard 100.033.601
Molar mass 173.82 g/mol
Appearance white odorless powder
hygroscopic or transparent crystal
Density 3.07 g/cm3 (pure crystal), 2.66 g/cm3 (hydrated crystal)
Melting point 705 °C (1,301 °F; 978 K)
very soluble
not listed
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazards (white): no codeNFPA 704 four-colored diamond
Related compounds
Other cations
sodium molybdate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Lithium molybdate (Li2MoO4) is a chemical compound. It is mainly used as an inhibitor in some types of industrial air conditioning.


Lithium molybdate is used as corrosion inhibitor in LiBr (Lithium bromide) absorption chiller for industrial central air conditioning. It is manufactured and shipped as either a colorless, transparent fluid or a white crystal powder. In either state it not classified as a hazardous material.

Li2MoO4 crystals have been found applicable for cryogenic phonon-scintillation detectors, which are used to investigate some rare nuclear processes.[1] The use of Li2MoO4 ceramics for antennas has been studied due to their low loss dielectric properties and the possibility to fabricate them by a room-temperature densification method instead of conventional sintering.[2]


  1. ^ Barinova, O. P.; Danevich, F. A.; Degoda, V. Ya.; Kirsanova, S. V.; Kudovbenko, V. M.; Pirro, S.; Tretyak, V. I. (2010-01-21). "First test of Li2MoO4 crystal as a cryogenic scintillating bolometer". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 613 (1): 54–57. doi:10.1016/j.nima.2009.11.059. 
  2. ^ Kähäri, Hanna; Ramachandran, Prasadh; Juuti, Jari; Jantunen, Heli. "Room-Temperature Densified Li2MoO4 Ceramic Patch Antenna and the Effect of Humidity". International Journal of Applied Ceramic Technology: n/a–n/a. doi:10.1111/ijac.12615. ISSN 1744-7402.