Lithium nitrate

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Lithium nitrate
Lithium nitrate.png
Lithium nitrate.jpg
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.290
RTECS number QU9200000
Properties
LiNO3
Molar mass 68.946 g/mol
Appearance White to light yellow solid
Density 2.38 g/cm3
Melting point 255 °C (491 °F; 528 K)
Boiling point 600 °C (1,112 °F; 873 K) (decomposes)
52.2 g/100 mL (20 °C)
90 g/100 mL (28 °C)
234 g/100 mL (100 °C)
Solubility soluble in ethanol, methanol, pyridine, ammonia, acetone
−62.0·10−6 cm3/mol (+3 H2O)
1.735[1]
Thermochemistry
64 J/mol K
105 J/mol K
-7.007 kJ/g or -482.3 kJ/mol
-389.5 kJ/mol
25.5 kH/mol
Hazards
Main hazards Oxidant, irritant
NFPA 704
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
1426 mg/kg (oral, rat)
Related compounds
Other cations
Sodium nitrate
Potassium nitrate
Rubidium nitrate
Caesium nitrate
Related compounds
Lithium sulfate
Lithium chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Lithium nitrate is an inorganic compound with the formula LiNO3. It is the lithium salt of nitric acid (an alkali metal nitrate). The salt is deliquescent, absorbing water to form the hydrated form, lithium nitrate trihydrate. Its eutectics are of interest for heat transfer fluids.[2]

It is made by treating lithium carbonate or lithium hydroxide with nitric acid.

Uses[edit]

This deliquescent colourless salt is an oxidizing agent used in the manufacture of red-colored fireworks and flares.

Thermal Storage[edit]

The hydrated form, lithium nitrate trihydrate, has an extremely high specific heat of fusion, 287 (± 7) J/g,[3] and hence can be used for thermal energy storage at its melt temperature of 303.3 K.[4]

Lithium Nitrate has been proposed as a medium to store heat collected from the sun for cooking. A Fresnel lens would be used to melt solid lithium nitrate, which would then function as a 'solar battery', allowing heat to be redistributed later by convection.[5]

Synthesis[edit]

Lithium nitrate can be synthesized by reacting nitric acid and lithium carbonate.

Li2CO3 + 2 HNO3 → 2 LiNO3 + H2O + CO2

Generally when forming LiNO3, a pH indicator is used to determine when all of the acid has been neutralized. However, this neutralization can also be recognized with the loss of carbon dioxide production.[6] In order to rid the final product of excess water, the sample is heated.

Toxicity[edit]

Lithium nitrate can be toxic to the body when ingested by targeting the central nervous system, thyroids, kidneys, and cardio-vascular system.[7] When exposed to the skin, eyes, and mucous membranes, lithium nitrate can cause irritation to these areas.[8]

Further reading[edit]

  • Berchiesi, Gianfrancesco; Vitali, Giovanni; Amico, Antonio (1985). "Transport properties of lithium nitrate and calcium nitrate binary solutions in molten acetamide". Journal of Chemical & Engineering Data. 30 (2): 208–9. doi:10.1021/je00040a023.
  • Kelly, Michael T; Tuan, Christopher Y (2006). "A Case Study Evaluating the Use of Lithium Nitrate to Arrest Alkali-Silica Reaction in an Existing Concrete Pavement". Airfield and Highway Pavement. pp. 625–35. doi:10.1061/40838(191)53. ISBN 978-0-7844-0838-4.
  • Muniz-Miranda, Francesco; Pagliai, Marco; Cardini, Gianni; Righini, Roberto (2012). "Bifurcated Hydrogen Bond in Lithium Nitrate Trihydrate Probed by ab Initio Molecular Dynamics". The Journal of Physical Chemistry A. 116 (9): 2147–53. Bibcode:2012JPCA..116.2147M. doi:10.1021/jp2120115. PMID 22309150.
  • Ruiz, María L; Lick, Ileana D; Leguizamón Aparicio, María S; Ponzi, Marta I; Rodriguez-Castellón, Enrique; Ponzi, Esther N (2012). "NO Influence on Catalytic Soot Combustion: Lithium Nitrate and Gold Catalysts". Industrial & Engineering Chemistry Research. 51 (3): 1150–7. doi:10.1021/ie201295s.

References[edit]

  1. ^ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8.[page needed]
  2. ^ Wietelmann, Ulrich and Bauer, Richard J. (2005) "Lithium and Lithium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim. doi:10.1002/14356007.a15_393.
  3. ^ Shamberger, Patrick J; Reid, Timothy (2012). "Thermophysical Properties of Lithium Nitrate Trihydrate from (253 to 353) K". Journal of Chemical & Engineering Data. 57 (5): 1404–11. doi:10.1021/je3000469.
  4. ^ Kenisarin, Murat; Mahkamov, Khamid (2016). "Salt hydrates as latent heat storage materials:Thermophysical properties and costs". Solar Energy Materials and Solar Cells. 145 (3): 255–86. doi:10.1016/j.solmat.2015.10.029.
  5. ^ http://barbequelovers.com/grills/a-solar-grill-prototype-for-a-greener-tomorrow[full citation needed]
  6. ^ "Synthesis database: Lithium nitrate synthesis". Amateur Science Network. Retrieved 18 June 2012.
  7. ^ "Material Safety Data Sheet". Sigma-Aldrich Catalog. Retrieved April 12, 2012.
  8. ^ "Chemical Datasheet". CAMEO Chemicals. Retrieved April 26, 2012.

External links[edit]

Salts and covalent derivatives of the nitrate ion
HNO3 He
LiNO3 Be(NO3)2 B(NO
3
)
4
C NO
3
,
NH4NO3
O FNO3 Ne
NaNO3 Mg(NO3)2 Al(NO3)3 Si P S ClONO2 Ar
KNO3 Ca(NO3)2 Sc(NO3)3 Ti(NO3)4 VO(NO3)3 Cr(NO3)3 Mn(NO3)2 Fe(NO3)3,
Fe(NO3)2
Co(NO3)2,
Co(NO3)3
Ni(NO3)2 Cu(NO3)2 Zn(NO3)2 Ga(NO3)3 Ge As Se Br Kr
RbNO3 Sr(NO3)2 Y Zr(NO3)4 Nb Mo Tc Ru Rh Pd(NO3)2 AgNO3 Cd(NO3)2 In Sn Sb(NO3)3 Te I Xe(NO3)2
CsNO3 Ba(NO3)2   Hf Ta W Re Os Ir Pt Au Hg2(NO3)2,
Hg(NO3)2
Tl(NO3)3,
TlNO3
Pb(NO3)2 Bi(NO3)3
BiO(NO3)
Po At Rn
FrNO3 Ra(NO3)2   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La(NO3)3 Ce(NO3)3,
Ce(NO3)4
Pr Nd Pm Sm Eu(NO3)3 Gd(NO3)3 Tb Dy Ho Er Tm Yb Lu
Ac(NO3)3 Th(NO3)4 Pa UO2(NO3)2 Np Pu Am Cm Bk Cf Es Fm Md No Lr