Localized surface plasmon

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

A localized surface plasmon (LSP) is the result of the confinement of a surface plasmon in a nanoparticle of size comparable to or smaller than the wavelength of light used to excite the plasmon. The LSP has two important effects: electric fields near the particle’s surface are greatly enhanced and the particle’s optical absorption has a maximum at the plasmon resonant frequency. The enhancement falls off quickly with distance from the surface and, for noble metal nanoparticles, the resonance occurs at visible wavelengths.[1] For semiconductor nanoparticles, the maximum optical absorption is often in the near-infrared and mid-infrared region.[2][3]


The plasmon resonant frequency is highly sensitive to the refractive index of the environment; a change in refractive index results in a shift in the resonant frequency. As the resonant frequency is easy to measure, this allows LSP nanoparticles to be used for nanoscale sensing applications.[4] Nanostructures exhibiting LSP resonances are used to enhance signals in modern analytical techniques based on spectroscopy. Other applications that rely on efficient light to heat generation in the nanoscale are heat-assisted magnetic recording (HAMR) , photothermal cancer therapy, and thermophotovoltaics. [5] So far, high efficiency applications using plasmonics have not been realized due to the high ohmic losses inside metals especially in the optical spectral range (visible and NIR). [6],[7]

See also[edit]


  1. ^ Rycenga, Matthew; Cobley, Claire M.; Zeng, Jie; Li, Weiyang; Moran, Christine H.; Zhang, Qiang; Qin, Dong; Xia, Younan (2011). "Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications". Chem. Rev. 111 (6): 3669–3712. doi:10.1021/cr100275d. PMC 3110991. PMID 21395318.
  2. ^ Liu, Xin; Swihart, Mark T. (2014). "Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials". Chem. Soc. Rev. 43 (11): 3908–3920. doi:10.1039/c3cs60417a. PMID 24566528.
  3. ^ Zhou, Shu; Pi, Xiaodong; Ni, Zhenyi; Ding, Yi; Jiang, Yingying; Jin, Chuanhong; Delerue, Christophe; Yang, Deren; Nozaki, Tomohiro (2015). "Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals". ACS Nano. 9 (1): 378–386. doi:10.1021/nn505416r. PMID 25551330.
  4. ^ Mayer, Kathryn M.; Hafner, Jason H. (2011). "Localized Surface Plasmon Resonance Sensors". Chemical Reviews. Plasmonics (111): 3828–3857. doi:10.1021/cr100313v. PMID 21648956.
  5. ^ ElKabbash, Mohamed; et al. (2017). "Tunable Black Gold: Controlling the Near-Field Coupling of Immobilized Au Nanoparticles Embedded in Mesoporous Silica Capsules". Advanced Optical Materials. 5 (21): 1700617. doi:10.1002/adom.201700617. Explicit use of et al. in: |first= (help)
  6. ^ Khurgin, Jacob (2015). "How to deal with the loss in plasmonics and metamaterials". Nature Nanotechnology. 10 (1): 2–6. arXiv:1411.6577. Bibcode:2015NatNa..10....2K. doi:10.1038/nnano.2014.310. PMID 25559961.
  7. ^ ElKabbash, Mohamed; et al. (2017). "Ultrafast transient optical loss dynamics in exciton–plasmon nano-assemblies". Nanoscale. 9 (19): 6558–6566. doi:10.1039/c7nr01512g. hdl:11693/37238. PMID 28470299. Explicit use of et al. in: |first= (help)