Lonely runner conjecture

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Animation illustrating the case of 6 runners
Example of Lonely runner conjecture with 6 runners

In number theory, and especially the study of diophantine approximation, the lonely runner conjecture is a conjecture originally due to J. M. Wills in 1967. Applications of the conjecture are widespread in mathematics; they include view obstruction problems[1] and calculating the chromatic number of distance graphs and circulant graphs.[2] The conjecture was given its picturesque name by L. Goddyn in 1998.[3]

Formulation[edit]

Question dropshade.png Unsolved problem in mathematics:
Is the lonely runner conjecture true for any number k of runners?
(more unsolved problems in mathematics)

Consider k runners on a circular track of unit length. At t = 0, all runners are at the same position and start to run; the runners' speeds are pairwise distinct. A runner is said to be lonely at time t if they are at a distance of at least 1/k from every other runner at time t. The lonely runner conjecture states that each runner is lonely at some time.

A convenient reformulation of the conjecture is to assume that the runners have integer speeds,[4] not all divisible by the same prime; the runner to be lonely has zero speed. The conjecture then states that for any set D of k − 1 positive integers with greatest common divisor 1,

where ||x|| denotes the distance of real number x to the nearest integer.

Known results[edit]

k year proved proved by notes
1 - - trivial: t = 0; any t
2 - - trivial: t = 1 / (2 * (v1-v0))
3 - - Any proof for k>3 also proves k=3[dubious ]
4 1972 Betke and Wills;[5] Cusick[6] -
5 1984 Cusick and Pomerance;[7] Bienia et al.[3] -
6 2001 Bohman, Holzman, Kleitman;[8] Renault[9] -
7 2008 Barajas and Serra[2] -

Dubickas[10] shows that for a sufficiently large number of runners for speeds the lonely runner conjecture is true if .

Notes[edit]

  1. ^ T. W. Cusick (1973). "View-Obstruction problems". Aequationes Mathematicae 9 (2–3): 165–170. doi:10.1007/BF01832623. 
  2. ^ a b J. Barajas and O. Serra (2008). "The lonely runner with seven runners". Electronic Journal of Combinatorics 15: R48. 
  3. ^ a b W. Bienia; et al. (1998). "Flows, view obstructions, and the lonely runner problem". Journal of Combinatorial Theory, Series B 72: 1–9. doi:10.1006/jctb.1997.1770. 
  4. ^ This reduction is proved, for example, in section 4 of the paper by Bohman, Holzman, Kleitman.
  5. ^ Betke, U.; Wills, J. M. (1972). "Untere Schranken für zwei diophantische Approximations-Funktionen". Monatshefte für Mathematik 76 (3): 214. doi:10.1007/BF01322924. 
  6. ^ T. W. Cusick (1974). "View-obstruction problems in n-dimensional geometry". Journal of Combinatorial Theory, Series A 16 (1): 1–11. doi:10.1016/0097-3165(74)90066-1. 
  7. ^ Cusick, T.W.; Pomerance, Carl (1984). "View-obstruction problems, III". Journal of Number Theory 19 (2): 131–139. doi:10.1016/0022-314X(84)90097-0. 
  8. ^ Bohman, T.; Holzman, R.; Kleitman, D. (2001), "Six lonely runners", Electronic Journal of Combinatorics 8 (2) 
  9. ^ Renault, J. (2004). "View-obstruction: A shorter proof for 6 lonely runners". Discrete Mathematics 287: 93–101. doi:10.1016/j.disc.2004.06.008. 
  10. ^ Dubickas, A. (2011). "The lonely runner problem for many runners". Glasnik Matematicki 46: 25–30. doi:10.3336/gm.46.1.05. 

External links[edit]