MAFB (gene)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
MAFB
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MAFB, KRML, MCTO, MAF bZIP transcription factor B
External IDs MGI: 104555 HomoloGene: 31315 GeneCards: 9935
RNA expression pattern
PBB GE MAFB 218559 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005461

NM_010658

RefSeq (protein)

NP_005452.2

NP_034788.1

Location (UCSC) Chr 20: 40.69 – 40.69 Mb Chr 2: 160.36 – 160.37 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

Transcription factor MafB also known as V-maf musculoaponeurotic fibrosarcoma oncogene homolog B is a protein that in humans is encoded by the MAFB gene. This gene maps to chromosome 20q11.2-q13.1, consists of a single exon and spans around 3 kb.[3][4]

Function[edit]

MafB is a basic leucine zipper (bZIP) transcription factor that plays an important role in the regulation of lineage-specific hematopoiesis. The encoded nuclear protein represses ETS1-mediated transcription of erythroid-specific genes in myeloid cells.[4]

Clinical significance[edit]

Mutations in the murine Mafb gene are responsible for the mutant mouse Kreisler (kr) that presents an abnormal segmentation of the hindbrain and exhibit hyperactive behavior, including head tossing and running in circles.[5] This mice dies at birth due to renal failure whereas the Mafb -/- mice dies of central apnea.[6]

Recently, single-nucleotide polymorphisms (SNPs) near MAFB have been found associated with nonsyndromic cleft lip and palate. [7] The GENEVA Cleft Consortium study, a genomewide association study involving 1,908 case-parent trios from Europe, the United States, China, Taiwan, Singapore, Korea, and the Philippines, first identified MAFB as being associated with cleft lip and/or palate with stronger genome-wide significance in Asian than European populations. The difference in populations could reflect variable coverage by available markers or true allelic heterogeneity. [8] In mouse models, Mafb mRNA and protein were detected in both craniofacial ectoderm and neural crest-derived mesoderm between embryonic days 13.5 and 14.5; expression was strong in the epithelium around the palatal shelves and in the medial edge epithelium during palatal fusion. After fusion, Mafb expression was stronger in oral epithelium compared to mesenchymal tissue.[7] In addition, sequencing analysis detected a new missense mutation in the Filipino population, H131Q, that was significantly more frequent in cases than in matched controls.[7] The gene-poor regions either side of the MAFB gene include numerous binding sites for transcription factors that are known to have a role in palate development. [9]

References[edit]

  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ Wang PW, Eisenbart JD, Cordes SP, Barsh GS, Stoffel M, Le Beau MM (Aug 1999). "Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias". Genomics. 59 (3): 275–81. doi:10.1006/geno.1999.5884. PMID 10444328. 
  4. ^ a b "Entrez Gene: MAFB v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (avian)". 
  5. ^ Cordes SP, Barsh GS (Dec 1994). "The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor". Cell. 79 (6): 1025–34. doi:10.1016/0092-8674(94)90033-7. PMID 8001130. 
  6. ^ Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S, Sieweke M, Stein R (Mar 2007). "MafB is required for islet beta cell maturation". Proceedings of the National Academy of Sciences of the United States of America. 104 (10): 3853–8. doi:10.1073/pnas.0700013104. PMC 1803762free to read. PMID 17360442. 
  7. ^ a b c Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, Liang KY, Wu T, Murray T, Fallin MD, Redett RA, Raymond G, Schwender H, Jin SC, Cooper ME, Dunnwald M, Mansilla MA, Leslie E, Bullard S, Lidral AC, Moreno LM, Menezes R, Vieira AR, Petrin A, Wilcox AJ, Lie RT, Jabs EW, Wu-Chou YH, Chen PK, Wang H, Ye X, Huang S, Yeow V, Chong SS, Jee SH, Shi B, Christensen K, Melbye M, Doheny KF, Pugh EW, Ling H, Castilla EE, Czeizel AE, Ma L, Field LL, Brody L, Pangilinan F, Mills JL, Molloy AM, Kirke PN, Scott JM, Scott JM, Arcos-Burgos M, Scott AF (Jun 2010). "A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4". Nature Genetics. 42 (6): 525–9. doi:10.1038/ng.580. PMC 2941216free to read. PMID 20436469. 
  8. ^ Dixon MJ, Marazita ML, Beaty TH, Murray JC. 2011. Cleft lip and palate: understanding genetic and environmental influences. Nature Reviews Genetics. 12: 167-178
  9. ^ Dixon MJ, Marazita ML, Beaty TH, Murray JC. 2011. Cleft lip and palate: understanding genetic and environmental influences. Nature Reviews Genetics. 12: 167-178

Further reading[edit]

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.