From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

MUL.APIN (𒀯𒀳) is the conventional title given to a Babylonian compendium that deals with many diverse aspects of Babylonian astronomy and astrology. It is in the tradition of earlier star catalogues, the so-called Three Stars Each lists, but represents an expanded version based on more accurate observation, likely compiled around 1000 BCE.[1] The text lists the names of 66 stars and constellations and further gives a number of indications, such as rising, setting and culmination dates, that help to map out the basic structure of the Babylonian star map.

The text is preserved in a 7th-century BCE copy on a pair of tablets, named for their incipit, corresponding to the first constellation of the year, MULAPIN "The Plough", identified with Triangulum plus Gamma Andromedae.


The earliest copy of the text so far discovered was made in 686 BCE; however the majority of scholars now believe that the text was originally compiled around 1000 BCE.[2] The latest copies of Mul-Apin are currently dated to around 300 BCE.

Astrophysicist Bradley Schaefer claims that the observations reported in these tablets were made in the region of Assur at around the year 1370 BCE.[3]


The text runs to two tablets and possibly a third auxiliary tablet, and is organised as follows:

Tablet 1[edit]

The first tablet is the most important resource for any potential reconstruction of the Babylonian star map as its various sections locate the constellations in relation to each other and to the calendar. Tablet 1 has six main sections:

  • All the major stars and constellations are listed and organised into three broad divisions according to celestial latitude allocating each star to three paths:
    • the northern path of Enlil containing 33 stars or constellations
    • the presumably equatorial path of Anu containing 23 stars or constellations, and
    • the southern path of Ea containing 15 stars or constellations,
Most of these stars and constellations are further attributed to a variety of Near Eastern deities.[4]
  • The heliacal rising dates of 34 stars and constellations are given according to the 360-day ‘ideal’ calendar year.
  • Lists of stars and constellations that rise and set at the same time.
  • The number of days between the risings of various stars and constellations.
  • The stars and constellations that rise and culminate at the same time.
  • The stars on the path of the moon, being the major constellations close to the ecliptic, which includes all the Babylonian forerunners to the zodiac constellations.

Even though the Babylonians used a luni-solar calendar, which added an occasional thirteenth month to the calendar, MUL.APIN, like most texts of Babylonian astrology, uses an ‘ideal’ year composed of 12 ‘ideal’ months each of which was composed of an ‘ideal’ 30 days. In this scheme the equinoxes were set on the 15th day of the first and seventh month, and the solstices on the 15th day of the fourth and tenth month.

Tablet 2[edit]

The second tablet is of greater interest to historians of science as it furnishes us with many of the methods and procedures used by Babylonian astrologers to predict the movements of the sun, moon and planets as well as the various methods used to regulate the calendar. The contents of tablet 2 can be summarised under ten headings as follows:

  • The names of the sun and the planets and the assertion that they all travel the same path as the moon.
  • Which stars are rising and which contain the full moon on the solstices and equinoxes in order to judge the disparity of the lunar and solar cycles.
  • Recommendations for observing the appearances of certain stars and the direction of the wind at the time of their first appearance.
  • Very approximate values for the number of days that each planet is visible and invisible during the course of its observational cycle.
  • The four stars associated with the four directional winds.
  • The dates when the sun is present in each of the three stellar paths.
  • Two types of intercalation scheme. One uses the rising dates of certain stars while the other uses position of the moon in relation to the stars and constellations.
  • The relative duration of day and night at the solstices and equinoxes, and the lengths of shadow cast by a gnomon at various times of the day at the solstices and equinoxes.
  • A basic mathematical scheme giving the rising and setting times of the moon in each month.
  • A selection of astrological omens.

There is some evidence that a third, and so far unrecovered, tablet was sometimes appended to the series. To judge from its opening line it started with a section of scholarly explanations of celestial omens.[5]

See also[edit]


  1. ^ John H. Rogers, "Origins of the ancient constellations: I. The Mesopotamian traditions", Journal of the British Astronomical Association 108 (1998) 9–28
  2. ^ Mul.Apin edited by Hunger & Pingree, page 9. Earlier scholars such as Papke and Van der Waerden posited a date around 2300 BCE, which has been criticised by Hunger & Pingree who opt for a date around 1000 BCE.
  3. ^ "Astronomer traces Zodiac's time and place of birth". The Inquirer. 4 June 2007. Retrieved 2009-11-13.
  4. ^ Mul-Apin by Gavin White
  5. ^ Mul.Apin edited by Hunger & Pingree pages 8-9.

External links[edit]