From Wikipedia, the free encyclopedia
Jump to: navigation, search
Not to be confused with Maltitol.
IUPAC name
Other names
Larixinic acid; Palatone; Veltol
118-71-8 YesY
ChemSpider 8066 YesY
Jmol-3D images Image
PubChem 8369
Molar mass 126.11 g·mol−1
Density 1.348 g/cm3
Melting point 161 to 162 °C (322 to 324 °F; 434 to 435 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 YesY verify (what isYesY/N?)
Infobox references

Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is found in the bark of larch tree, in pine needles, and in roasted malt (from which it gets its name). It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances. Maltol's sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. It is not registered as a food additive in the EU and thus has no E-number.[1] Instead, maltol is registered as a flavor component in the EU.[2]

Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+.[3] Related to this property, maltol has been reported to greatly increase aluminum uptake in the body[4] and to increase the oral bioavailability of gallium[5] and iron.[6]

Derivatives of maltol[edit]

Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells[7][8]

See also


  1. ^ Official Journal of the European Union, Volume 54, November 12, 2011
  2. ^ Official Journal of the European Union, Volume 55, October 2, 2012
  3. ^ B. D. Liboiron, K. H. Thompson, G. R. Hanson, E. Lam, N. Aebischer, C. Orvig (2005). "New Insights into the Interactions of Serum Proteins with Bis(maltolato)oxovanadium(IV): Transport and Biotransformation of Insulin-Enhancing Vanadium Pharmaceuticals". J. Am. Chem. Soc. 127 (14): 5104–5115. doi:10.1021/ja043944n. PMID 15810845. 
  4. ^ N. Kaneko, H. Yasui, J. Takada, K. Suzuki, H. Sakurai (2004). "Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice". J. Inorg. Biochem. 98 (12): 2022–2031. doi:10.1016/j.jinorgbio.2004.09.008. PMID 15541491. 
  5. ^ L. R. Bernstein, T. Tanner, C. Godfrey, B. Noll (2000). "Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability". Metal Based Drugs 7 (1): 33–48. doi:10.1155/MBD.2000.33. PMC 2365198. PMID 18475921. 
  6. ^ D.M. Reffitt, T.J. Burden, P.T. Seed, J. Wood J, R.P. Thompson, J.J. Powell (2000). "Assessment of iron absorption from ferric trimaltol". Ann. Clin. Biochem. 37 (4): 457–66. doi:10.1258/0004563001899645. PMID 10902861. 
  7. ^ S.Amatori, G.Ambrosi, M.Fanelli, M.Formica, V.Fusi, L.Giorgi, E.Macedi, M.Micheloni, P.Paoli, R.Pontellini, P.Rossi, Synthesis, basicity, structural characterization, and biochemical properties of two [(3-hydroxy-4-pyron-2-yl)methyl]amine derivatives showing antineoplastic features, J. Org. Chem., 2 marzo 2012; 77(5):2207-18. DOI: 10.1021/jo202270j. Epub 22 febbraio 2012.
  8. ^ S.Amatori, I.Bagaloni, E.Macedi, M.Formica, L.Giorgi, V.Fusi, M.Fanelli,Malten, a new synthetic molecule showing in vitro antiproliferative activity against tumour cells and induction of complex DNA structural alterations, Br. J. Cancer., 13 luglio 2010; 103(2):239-48. DOI: 10.1038/sj.bjc.6605745. Epub 22 giugno 2010.