Manne Siegbahn

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Manne Siegbahn
1924 Karl Manne Siegbahn.jpg
Karl Manne Siegbahn in 1924
Born Karl Manne Georg Siegbahn
(1886-12-03)3 December 1886
Örebro, Sweden
Died 26 September 1978(1978-09-26) (aged 91)
Stockholm, Sweden
Nationality Swedish
Fields Physics
Institutions University of Lund
University of Uppsala
University of Stockholm
Alma mater University of Lund
Known for X-ray spectroscopy
Notable awards
Spouse Karin Högbom
He is the father of Nobel laureate Kai Siegbahn.

Karl Manne Georg Siegbahn ForMemRS[1] (3 December 1886 – 26 September 1978)[2] was a Swedish physicist who was awarded the Nobel Prize in Physics in 1924 "for his discoveries and research in the field of X-ray spectroscopy".[3][4]


Siegbahn was born in Örebro, Sweden, and his parents was Georg Siegbahn och Emma Zetterberg.[5] He graduated in Stockholm 1906 and begun his studies at Lund University the same year.[6] During his education he was amanuensis for Johannes Rydberg.[7] In 1908 he studied at the University of Göttingen.[8] He obtained his Ph.D. at the Lund University in 1911, his thesis was titled Magnetische Feldmessungen (magnetic field measurements). He became acting professor for Rydberg when his health was failing, and succeeded him as full professor in 1920.[9] However, in 1922 he left Lund for a professorship at the Uppsala University.[10]

In 1937, Siegbahn was appointed Director of the Physics Department of the Nobel Institute of the Royal Swedish Academy of Sciences. In 1988 this was renamed the Manne Siegbahn Institute (MSI).[11] The institute research groups have been reorganized since, but the name lives on in the Manne Siegbahn Laboratory hosted by Stockholm University.

X-ray spectroscopy[edit]

Manne Siegbahn begun his studies about X-ray spectroscopy in 1914. In the beginning he used the same type of spectrometer as Henry Moseley did for finding the relationship between the wavelength of some elements and their place at the periodic system. Shortly thereafter he developed improved experimental apparatus which allowed him to make very accurate measurements of the X-ray wavelengths produced by atoms of different elements. Also, he found that several of the spectral lines that Moseley had discovered consisted of more components. By studying these components and improving the spectrometer, Siegbahn got an almost complete understanding of the electron shell.[12] He developed a convention for naming the different spectral lines that are characteristic to elements in X-ray spectroscopy, the Siegbahn notation. Siegbahn's precision measurements drove many developments in quantum theory and atomic physics.[13]

Awards and honours[edit]

Siegbahn was awarded the Nobel Prize in Physics in 1924. He won the Hughes Medal 1934 and Rumford Medal 1940. In 1944, he patented the Siegbahn pump. Siegbahn was elected a Foreign Member of the Royal Society (ForMemRS) in 1954.[1]

Personal life[edit]

Siegbahn married Karin Högbom in 1914. They had two children: Bo Siegbahn (1915–2008), a diplomat and politician, and Kai Siegbahn (1918–2007), a physicist who received the Nobel Prize in Physics in 1981 for his contribution to the development of X-ray photoelectron spectroscopy.


  1. ^ a b c Atterling, H. (1991). "Karl Manne Georg Siegbahn. 3 December 1886-24 September 1978". Biographical Memoirs of Fellows of the Royal Society. 37: 428–426. doi:10.1098/rsbm.1991.0022. 
  2. ^ "The Nobel Prize in Physics 1924". Nobel Media AB. 2014. Retrieved 2017-04-23. 
  3. ^ "The Nobel Prize in Physics 1924". Nobel Media AB 2014. Retrieved 2017-04-23. 
  4. ^ Shampo, M. A.; Kyle, R. A. (1998). "Manne Siegbahn--Nobel Prize for x-ray spectroscopy". Mayo Clinic proceedings. Mayo Clinic. 73 (3): 249. PMID 9511784. doi:10.1016/S0025-6196(11)64468-6. 
  5. ^ Harnesk, Paul, ed. (1945). Vem är vem?. D. 1, Stockholmsdelen (in Swedish). Stockholm: Vem är vem bokförlag. p. 760. 
  6. ^ Litzén, Ulf (2015). Fysik i Lund under 300 år (in Swedish). Lund: Lunds universitetshistoriska sällskap. p. 87. ISBN 9789175453200. 
  7. ^ Hulthén, Erik (1951). "1900–1925, fysikalisk forskning i Lund under ett kvartsekel". Manne Siegbahn : 1886 3/12 1951 (in Swedish). Uppsala. p. 3. 
  8. ^ Beweis 1924: Prismen brechen auch Röntgenstrahlen (PDF) (in German). Universität Göttingen. 
  9. ^ Litzén (2015). Fysik i Lund under 300 år. p. 95. 
  10. ^ Litzén (2015). Fysik i Lund under 300 år (in Swedish). p. 96. 
  11. ^ "The MSL History". 2014-12-10. Retrieved 2017-04-23. 
  12. ^ Litzén (2015). Fysik i Lund under 300 år (in Swedish). p. 90. 
  13. ^ "Nobel Prize in Physics 1924 - Presentation Speech". Nobel Media AB. 2014. Retrieved 2017-04-23.