Mars 2020
Mission type | Rover |
---|---|
Operator | NASA / JPL |
COSPAR ID | 2020-052A |
SATCAT no. | 45983 |
Website | http://mars.jpl.nasa.gov/mars2020/ |
Mission duration | Planned: 1 Mars year[1] |
Spacecraft properties | |
Manufacturer | Jet Propulsion Laboratory |
Start of mission | |
Launch date | 2020 (planned)[1] |
Mars rover | |
Spacecraft component | Rover |
Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020.[1] It is intended to investigate an astrobiologically relevant ancient environment on Mars, investigate its surface geological processes and history, including the assessment of its past habitability, the possibility of extant life on Mars, and potential for preservation of biosignatures within accessible geological materials.[2][3] The proposed landing site for the mission is Jezero crater[4][5] located in the Syrtis Major quadrangle at coordinates 18°51′18″N 77°31′08″E / 18.855°N 77.519°E.[6]
Mars 2020 was announced by NASA on 4 December 2012 at the fall meeting of the American Geophysical Union in San Francisco.[7] The rover's design will be derived from the Curiosity rover, and will carry a different scientific payload.[8] Nearly 60 proposals[9][10] for rover instrumentation were evaluated and, on 31 July 2014, NASA announced the payload for the rover.[11][12]
Mission
Year | Launch | C3-Launch energy |
---|---|---|
2018 | Apr 2018 – May 2018 | 7.7–11.1 km2/s2 |
2020 | Jul 2020 – Sep 2020 | 13.2 - 18.4 km2/s2 |
The rover is planned to be launched in 2020.[7] The Jet Propulsion Laboratory will manage the mission. The payload and science instruments for the mission were selected in July 2014 after an open competition for payloads[11] based on scientific objectives set one year earlier.[14] However, the mission is contingent on receiving adequate funding.[15] Precise mission details will be determined by the mission's science definition team.[16]
Proposed objectives
The mission is part of NASA's Mars Exploration Program,[17] and its Mars Program Planning Group (MPPG), as well as the associate administrator of science John Grunsfeld, endorsed a sample retrieval and return mission to Earth for scientific analysis.[18][19][20] Regardless, a mission requirement is that it must help prepare NASA for its long-term sample return or manned mission efforts.[3][20][21]
On 9 July 2013, the Mars 2020 Science Definition Team reiterated that the rover should look for signs of past life, collect samples for possible future return to Earth, and demonstrate technology for future human exploration of Mars. The Science Definition Team proposed the rover collect and package as many as 31 samples of rock cores and soil for a later mission to bring back for more definitive analysis in laboratories on Earth, but in 2015 the concept was changed to distribute the tubes in small piles across the surface of Mars. As a result, a secondary rover mission may be planned; it could trail its predecessor, picking up the samples left behind.[22]
In September 2013 NASA launched an Announcement of Opportunity for researchers to propose and develop the instruments needed, including a core sample cache.[23][24] The science conducted by the rover's instruments would provide the context needed to make informed decisions about whether to return the samples to Earth.[25] The chairman of the Science Definition Team stated that NASA does not presume that life ever existed on Mars, but given the recent Curiosity rover findings, past Martian life seems possible.[25]
The rover can make measurements and technology demonstrations to help designers of a human expedition understand any hazards posed by Martian dust, and will test technology to produce oxygen (O2) from Martian atmospheric carbon dioxide (CO2).[26] Improved precision landing technology that enhances the scientific value of robotic missions also will be critical for eventual human exploration on the surface.[27] Based on input from the Science Definition Team, NASA will select final objectives for the 2020 rover. Those will become the basis for soliciting proposals to provide instruments for the rover's science payload in the spring 2014.[26]
Design
As proposed, the rover will be based on the design of Curiosity.[7] While there will be differences in scientific instruments and the engineering required to support them, the entire landing system (including the sky crane and heat shield) and rover chassis can essentially be recreated without any additional engineering or research. This reduces overall technical risk for the mission, while saving funds and time on development.[28]
Among the leftover Curiosity equipment, a radioisotope thermoelectric generator—originally intended as a backup part for Curiosity—will power the rover.[7][29]
The new rover mission and launch is estimated to cost roughly US$1.5 billion, plus or minus $200 million, according to The Aerospace Corporation. The mission's predecessor, the Mars Science Laboratory, cost US$2.5 billion in total.[7] NASA was working toward coming up with its own estimate as of the day of the announcement.[30] NASA associate administrator of science John Grunsfeld said it was the availability of spare parts that will make the new rover affordable on NASA's lean budget. Curiosity's engineering team will also be involved in the new rover's design.[7][16]
Proposed scientific instruments
- Planetary Instrument for X-Ray Lithochemistry (PIXL), an x-ray fluorescence spectrometer to determine the fine scale elemental composition of Martian surface materials.[31][32]
- Radar Imager for Mars' subsurface experiment (RIMFAX), a ground-penetrating radar to image dozens of meters beneath the rover.[33][34]
- Mars Environmental Dynamic Analyzer (MEDA), a set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity and dust size and shape. It would be provided by Spain's Centro de Astrobiología.[35]
- The Mars Oxygen ISRU Experiment (MOXIE) is an exploration technology investigation that will produce oxygen (O2) from Martian atmospheric carbon dioxide (CO2).[36] This technology could be used in the future to support human life or make rocket fuel for return missions.[37]
- SuperCam, an instrument that can provide imaging, chemical composition analysis and mineralogy in rocks and regolith from a distance. It is similar to the ChemCam on the Curiosity rover but with four scientific instruments that will allow it to look for biosignatures.[38]
- Mastcam-Z, a stereoscopic imaging system with the ability to zoom.
- Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC), an ultraviolet Raman spectrometer that uses fine-scale imaging and an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds.[39][40]
- Mars Helicopter Scout (MHS) is a solar powered helicopter drone with a mass of 1 kg (2.2 lb) that could help pinpoint interesting targets for study and plan the best driving route.[41][42] The helicopter would fly no more than 3 minutes per day and cover a distance of about 1 km (0.62 mi) daily.[43] It has coaxial rotors, a high resolution downward looking camera for navigation, landing, and science surveying of the terrain, and a communication system to relay data to the rover.[44]
Potential landing sites
The following locations have been selected as possible landing sites:[45]
- Columbia Hills, in Gusev Crater
- Eberswalde Crater
- Holden Crater
- Jezero Crater
- Mawrth Vallis
- Northeastern region of Syrtis Major Planum
- Nili Fossae
- Southwestern region of Melas Chasma
Reactions
In reaction to the announcement, California U.S. Representative Adam Schiff came out in support of the new rover mission plans, saying that "an upgraded rover with additional instrumentation and capabilities is a logical next step that builds upon now proven landing and surface operations systems."[7] Schiff also said he favored an expedited launch in 2018 which would enable an even greater payload to be launched to Mars. Schiff said he would be working with NASA, White House administration and Congress to explore the possibility of advancing the launch date.[7]
NASA's science chief John Grunsfeld responded that while it could be possible to launch in 2018, "it would be a push." Grunsfeld said a 2018 launch would require certain science investigations be excluded from the rover and that even the 2020 launch target would be "ambitious."[7]
Space educator Bill Nye added his support for the planned mission saying, “We don't want to stop what we're doing on Mars because we're closer than ever to answering these questions: Was there life on Mars and stranger still, is there life there now in some extraordinary place that we haven't yet looked at? Mars was once very wet—it had oceans and lakes. Did life start on Mars and get flung into space and we are all descendants of Martian microbes? It's not crazy, and it's worth finding out. It's worth the cost of a cup of coffee per taxpayer every 10 years or 13 years to find out.” Nye also endorsed a Mars sample-return role, saying “The amount of information you can get from a sample returned from Mars is believed to be extraordinarily fantastic and world-changing and worthy."[46]
The selection has been criticized for NASA's constant attention to Mars,[47] and neglecting other Solar System destinations in constrained budget times.
Images
-
Jezero and surrounding region
-
Possible channel bringing sediment to the crater
-
Jezero delta – chemical alteration by water (hi-res)
-
Interior of Jezero; north is to the left
See also
References
- ^ a b c "Mission: Overview". NASA. Retrieved 7 March 2015.
- ^ Chang, Alicia (9 July 2013). "Panel: Next Mars rover should gather rocks, soil". AP News. Retrieved 12 July 2013.
- ^ a b Cowing, Keith (21 December 2012). "Science Definition Team for the 2020 Mars Rover". NASA. SpaceRef. Retrieved 21 December 2012.
- ^ Hand, Eric (6 August 2015). "Mars scientists tap ancient river deltas and hot springs as promising targets for 2020 rover". Science News. Science News. Retrieved 7 August 2015.
- ^ a b Staff (4 March 2015). "PIA19303: A Possible Landing Site for the 2020 Mission: Jezero Crater". NASA. Retrieved 7 March 2015.
- ^ a b Wray, James (6 June 2008). "Channel into Jezero Crater Delta". NASA. Retrieved 6 March 2015.
- ^ a b c d e f g h i Harwood, William (4 December 2012). "NASA announces plans for new $1.5 billion Mars rover". CNET. Retrieved 5 December 2012.
Using spare parts and mission plans developed for NASA's Curiosity Mars rover, the space agency says it can build and launch a new rover in 2020 and stay within current budget guidelines.
- ^ Amos, Jonathan (4 December 2012). "Nasa to send new rover to Mars in 2020". BBC News. Retrieved 5 December 2012.
- ^ Webster, Guy; Brown, Dwayne (21 January 2014). "NASA Receives Mars 2020 Rover Instrument Proposals for Evaluation". NASA. Retrieved 21 January 2014.
- ^ Timmer, John (31 July 2014). "NASA announces the instruments for the next Mars rover". ARS Technica. Retrieved 7 March 2015.
- ^ a b Brown, Dwayne (31 July 2014). "RELEASE 14-208 – NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before". NASA. Retrieved 31 July 2014.
- ^ Brown, Dwayne (31 July 2014). "NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before". NASA. Retrieved 31 July 2014.
- ^ McCleese, Daniel J. (March 2006). "Robotic Mars Exploration Strategy, 2007–2016" (PDF). Mars Advanced Planning Group 2006. NASA: 27. JPL 400–1276.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ "Objectives – 2020 Mission Plans". mars.nasa.gov. Retrieved 4 December 2015.
- ^ "Update on NASA Mars Rover Plans". www.planetary.org. Retrieved 4 December 2015.
- ^ a b Wall, Mike (4 December 2012). "NASA to Launch New Mars Rover in 2020". Space.com. Retrieved 5 December 2012.
- ^ Program And Missions – 2020 Mission Plans. NASA, 2015.
- ^ Mann, Adam (4 December 2012). "NASA Announces New Twin Rover for Curiosity Launching to Mars in 2020". Wired. Retrieved 5 December 2012.
- ^ "Mars Planning Group Endorses Sample Return". SpaceNews. 3 October 2012. (subscription required)
- ^ a b Summary of the MPPG Final Report
- ^ Moskowitz, Clara (5 February 2013). "Scientists Offer Wary Support for NASA's New Mars Rover". Space.com. Retrieved 5 February 2013.
- ^ Rosenthal, Jake (12 October 2015). "Mars 2020 and the Adaptive Caching Assembly: An Intern's Perspective". The Planetary Society. Retrieved 19 October 2015.
- ^ "Announcement of Opportunity: Mars 2020 Investigations" (PDF). NASA. 24 September 2013. Retrieved 18 May 2014.
- ^ "Mars 2020 Mission: Instruments". NASA. 2013. Retrieved 18 May 2014.
- ^ a b "Science Team Outlines Goals for NASA's 2020 Mars Rover". Jet Propulsion Laboratory. NASA. 9 July 2013. Retrieved 10 July 2013.
- ^ a b Klotz, Irene (21 November 2013). "Mars 2020 Rover To Include Test Device To Tap Planet's Atmosphere for Oxygen". Space News. Retrieved 22 November 2013.
- ^ Bergin, Chris (2 September 2014). "Curiosity EDL data to provide 2020 Mars Rover with super landing skills". NASA Space Flight. Retrieved 3 September 2014.
- ^ Dreier, Casey (10 January 2013). "New Details on the 2020 Mars Rover". The Planetary Society. Retrieved 15 March 2013.
- ^ Boyle, Alan (4 December 2012). "NASA plans 2020 Mars rover remake". Cosmic Log. NBC News. Retrieved 5 December 2012.
- ^ "Mars redux: NASA to launch Curiosity-like rover". Idaho State Journal. Associated Press. 4 December 2012. Retrieved 5 December 2012.
- ^ a b Webster, Guy (31 July 2014). "Mars 2020 Rover's PIXL to Focus X-Rays on Tiny Targets". NASA. Retrieved 31 July 2014.
- ^ "Adaptive sampling for rover x-ray lithochemistry" (PDF).
- ^ Chung, Emily (19 August 2014). "Mars 2020 rover's RIMFAX radar will 'see' deep underground". Canadian Broadcasting Corp. Retrieved 19 August 2014.
- ^ U of T scientist to play key role on Mars 2020 Rover Mission
- ^ In-Situ Resource Utilization (ISRU). GCD-NASA.
- ^ Borenstein, Seth (31 July 2014). "NASA to test making rocket fuel ingredient on Mars". AP News. Retrieved 31 July 2014.
- ^ Webb, Jonathan (1 August 2014). "Mars 2020 rover will pave the way for future manned missions". BBC News. Retrieved 1 August 2014.
- ^ NASA Administrator Signs Agreements to Advance Agency's Journey to Mars. 16 June 2015.
- ^ a b Webster, Guy (31 July 2014). "SHERLOC to Micro-Map Mars Minerals and Carbon Rings". NASA. Retrieved 31 July 2014.
- ^ "SHERLOC: Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals, an Investigation for 2020" (PDF).
- ^ "NASA Is Developing A Helicopter Drone For 2020 Mars Mission". Business 2 Community. 27 January 2015. Retrieved 28 January 2015.
- ^ Leone, Dan (19 November 2015). "Elachi Touts Helicopter Scout for Mars Sample-Caching Rover". Space News. Retrieved 20 November 2015.
- ^ "Crazy Engineering Mars Helicopter Transcript" (PDF). JPL – NASA. 22 January 2015. Retrieved 1 September 2015.
- ^ Volpe, Richard. "2014 Robotics Activities at JPL" (PDF). Jet Propulsion Laboratory. Retrieved 1 September 2015.
- ^ Farley, Ken (8 September 2015). "Researcher discusses where to land Mars 2020". Phys.org. Retrieved 9 September 2015.
- ^ Rosie Mestel (6 December 2012). "Bill Nye, the (planetary) science guy, on NASA's future". Los Angeles Times. Retrieved 3 July 2013.
- ^ Matson, John (21 February 2013). "Has NASA Become Mars-Obsessed?". Scientific American. Retrieved 8 December 2013.
- ^ Goudge, Timothy A.; Mustard, John F.; Head, James W.; Fassett, Caleb I.; Wiseman, Sandra M. (6 March 2015). "Assessing the Mineralogy of the Watershed and Fan Deposits of the Jezero Crater Paleolake System, Mars". Journal of Geophysical Research. doi:10.1002/2014JE004782.
External links
- Mars 2020 website
- Mars 2020 Science Definition Team Report at NASA.gov
- Proposed 2020 Mars Rover Science Goals (July 2013) on YouTube
- Mars 2020 Rover and Beyond News Teleconference (July 2014) on YouTube