Mazur–Ulam theorem

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, the Mazur–Ulam theorem states that if and are normed spaces over R and the mapping

is a surjective isometry, then is affine.

It is named after Stanisław Mazur and Stanisław Ulam in response to an issue raised by Stefan Banach.


  • Richard J. Fleming; James E. Jamison (2003). Isometries on Banach Spaces: Function Spaces. CRC Press. p. 6. ISBN 1-58488-040-6.
  • Stanisław Mazur; Stanisław Ulam (1932). "Sur les transformationes isométriques d'espaces vectoriels normés". C. R. Acad. Sci. Paris. 194: 946–948.

External links[edit]