Mazur–Ulam theorem

From Wikipedia, the free encyclopedia
  (Redirected from Mazur-Ulam theorem)
Jump to: navigation, search

In mathematics, the Mazur–Ulam theorem states that if and are normed spaces over R and the mapping

is a surjective isometry, then is affine.

It is named after Stanisław Mazur and Stanislaw Ulam in response to an issue raised by Stefan Banach.

References[edit]

  • Richard J. Fleming; James E. Jamison (2003). Isometries on Banach Spaces: Function Spaces. CRC Press. p. 6. ISBN 1-58488-040-6. 
  • Stanisław Mazur; Stanisław Ulam (1932). "Sur les transformationes isométriques d'espaces vectoriels normés". C. R. Acad. Sci. Paris. 194: 946–948. 

External links[edit]