# Mean curvature flow

In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space). Intuitively, a family of surfaces evolves under mean curvature flow if the normal component of the velocity of which a point on the surface moves is given by the mean curvature of the surface. For example, a round sphere evolves under mean curvature flow by shrinking inward uniformly (since the mean curvature vector of a sphere points inward). Except in special cases, the mean curvature flow develops singularities.

Under the constraint that volume enclosed is constant, this is called surface tension flow.

It is a parabolic partial differential equation, and can be interpreted as "smoothing".

## Physical examples

The most familiar example of mean curvature flow is in the evolution of soap films. A similar 2-dimensional phenomenon is oil drops on the surface of water, which evolve into disks (circular boundary).

Mean curvature flow was originally proposed as a model for the formation of grain boundaries in the annealing of pure metal.

## Properties

The mean curvature flow extremalizes surface area, and minimal surfaces are the critical points for the mean curvature flow; minima solve the isoperimetric problem.

For manifolds embedded in a Kähler–Einstein manifold, if the surface is a Lagrangian submanifold, the mean curvature flow is of Lagrangian type, so the surface evolves within the class of Lagrangian submanifolds.

Huisken's monotonicity formula gives a monotonicity property of the convolution of a time-reversed heat kernel with a surface undergoing the mean curvature flow.

Related flows are:

## Mean curvature flow of a three-dimensional surface

The differential equation for mean-curvature flow of a surface given by $z=S(x,y)$ is given by

${\frac {\partial S}{\partial t}}=2D\ H(x,y){\sqrt {1+\left({\frac {\partial S}{\partial x}}\right)^{2}+\left({\frac {\partial S}{\partial y}}\right)^{2}}}$ with $D$ being a constant relating the curvature and the speed of the surface normal, and the mean curvature being

{\begin{aligned}H(x,y)&={\frac {1}{2}}{\frac {\left(1+\left({\frac {\partial S}{\partial x}}\right)^{2}\right){\frac {\partial ^{2}S}{\partial y^{2}}}-2{\frac {\partial S}{\partial x}}{\frac {\partial S}{\partial y}}{\frac {\partial ^{2}S}{\partial x\partial y}}+\left(1+\left({\frac {\partial S}{\partial y}}\right)^{2}\right){\frac {\partial ^{2}S}{\partial x^{2}}}}{\left(1+\left({\frac {\partial S}{\partial x}}\right)^{2}+\left({\frac {\partial S}{\partial y}}\right)^{2}\right)^{3/2}}}.\end{aligned}} In the limits $|{\frac {\partial S}{\partial x}}|\ll 1$ and $|{\frac {\partial S}{\partial y}}|\ll 1$ , so that the surface is nearly planar with its normal nearly parallel to the z axis, this reduces to a diffusion equation

${\frac {\partial S}{\partial t}}=D\ \nabla ^{2}S$ While the conventional diffusion equation is a linear parabolic partial differential equation and does not develop singularities (when run forward in time), mean curvature flow may develop singularities because it is a nonlinear parabolic equation. In general additional constraints need to be put on a surface to prevent singularities under mean curvature flows.

Every smooth convex surface collapses to a point under the mean-curvature flow, without other singularities, and converges to the shape of a sphere as it does so. For surfaces of dimension two or more this is a theorem of Gerhard Huisken; for the one-dimensional curve-shortening flow it is the Gage–Hamilton–Grayson theorem. However, there exist embedded surfaces of two or more dimensions other than the sphere that stay self-similar as they contract to a point under the mean-curvature flow, including the Angenent torus.