Messier 32

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Messier 32
M32 Lanoue.png
Dwarf Elliptical Galaxy M32
Observation data (J2000 epoch)
Constellation Andromeda
Right ascension 00h 42m 41.8s[1]
Declination +40° 51′ 55″[1]
Redshift -200 ± 6 km/s[1]
Distance 2.49 ± 0.08 million light-years (763 ± 24 kpc)[2][3][4][a]
Apparent magnitude (V) 8.08[5][6]
Type cE2[1]
Apparent size (V) 8′.7 × 6′.5[1]
Notable features satellite galaxy of the
Andromeda Galaxy
Other designations
M 32, NGC 221,[1] UGC 452,[1] PGC 2555,[1] Arp 168,[1] LEDA 2555
See also: Galaxy, List of galaxies

Messier 32 (also known as NGC 221) is a dwarf elliptical galaxy located about 2.65 million light-years from Earth, appearing in the constellation Andromeda. M32 is a satellite galaxy of the Andromeda Galaxy (M31) and was discovered by Guillaume Le Gentil in 1749. M32 measures 6.5 ± 0.2 thousand light-years in diameter at the widest point.[7]

The galaxy is a prototype of the compact elliptical (cE) galaxy class. Half the stars concentrate within an effective radius of only 100 parsecs.[8][9] Densities in the central stellar cusp increase steeply, exceeding 3×107 M pc−3 at the smallest radii resolved by HST.[10] Like more ordinary elliptical galaxies, M32 contains mostly older faint red and yellow stars with practically no dust or gas and consequently no current star formation.[11] It does, however, show hints of star formation in the relatively recent past. [12]

In this image of the Andromeda Galaxy, Messier 32 is to the left of the center.


The structure and stellar content of M32 are difficult to explain by traditional galaxy formation models. Theoretical arguments[13] and some simulations suggest a scenario in which the strong tidal field of M31 can transform a spiral galaxy into a compact elliptical. As a small spiral galaxy falls into the central parts of M31, most of the outer layers of the smaller spiral are stripped away. The central bulge of the galaxy is much less affected and retains its morphology. Tidal effects trigger a massive star burst in the core, resulting in the high density of M32 observed today.[14] There is also evidence that M32 has an outer disk.[15]

Newer simulations find that an off-centre impact by M32 around 800 million years ago explains the present-day warp in M31's disk.[16] However this feature only occurs during the first orbital passage, whereas it takes many orbits for tides to transform a normal dwarf into M32. The observed colours and stellar populations of M32's outskirts do not match the stellar halo of M31,[17] indicating that tidal losses from M32 are not their source. Taken together, these circumstances may suggest that M32 already began in its compact state, and has retained most of its own stars. At least one similar cE galaxy has been discovered in isolation, without any massive companion to thresh it.[18]

Distance measurements[edit]

At least two techniques have been used to measure distances to M32. The infrared surface brightness fluctuations distance measurement technique estimates distances to spiral galaxies based on the graininess of the appearance of their bulges. The distance measured to M32 using this technique is 2.46 ± 0.09 million light-years (755 ± 28 kpc).[2] However, M32 is close enough that the tip of the red giant branch (TRGB) method may be used to estimate its distance. The estimated distance to M32 using this technique is 2.51 ± 0.13 million light-years (770 ± 40 kpc).[3][4] For several additional reasons, M32 is thought to be in the foreground of M31, rather than behind. Its stars and planetary nebulae do not appear obscured or reddened by foreground gas or dust.[19][20] Gravitational microlensing of M31 by a star in M32 was observed in one event.[21]

Black hole[edit]

M32 contains a supermassive black hole. Its mass has been estimated to lie between 1.5 and 5 million solar masses.[22][23][24][25][26][27] A centrally located faint radio and X-ray source (now named M32* in analogy to Sgr A*) is attributed to gas accretion onto the black hole.[28][29]

See also[edit]


  1. ^ a b c d e f g h i "NASA/IPAC Extragalactic Database". Results for NGC 221. Retrieved 2006-11-29. 
  2. ^ a b Jensen, Joseph B.; Tonry, John L.; Barris, Brian J.; Thompson, Rodger I.; Liu, Michael C.; Rieke, Marcia J.; Ajhar, Edward A.; Blakeslee, John P. (2003). "Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations". Astrophysical Journal. 583 (2): 712–726. Bibcode:2003ApJ...583..712J. arXiv:astro-ph/0210129Freely accessible. doi:10.1086/345430. 
  3. ^ a b Karachentsev, I. D.; Karachentseva, V. E.; Hutchmeier, W. K.; Makarov, D. I. (2004). "A Catalog of Neighboring Galaxies". Astronomical Journal. 127 (4): 2031–2068. Bibcode:2004AJ....127.2031K. doi:10.1086/382905. 
  4. ^ a b Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6. 
  5. ^ "SIMBAD-M32". SIMBAD Astronomical Database. Retrieved 2009-11-29. 
  6. ^ Armando, Gil de Paz; Boissier; Madore; Seibert; Boselli; et al. (2007). "The GALEX Ultraviolet Atlas of Nearby Galaxies". Astrophysical Journal Supplement. 173 (2): 185–255. Bibcode:2007ApJS..173..185G. arXiv:astro-ph/0606440Freely accessible. doi:10.1086/516636. 
  7. ^ Diameter = distance × sin(diameter_angle) = 6.5 ± 0.2 thousand light-years. diameter
  8. ^ Kent, S. M. (1987). "Surface photometry of six local group galaxies". Astronomical Journal. 94: 306–314. Bibcode:1987AJ.....94..306K. doi:10.1086/114472. 
  9. ^ Mateo, M. L. (1998). "Dwarf Galaxies of the Local Group". Annual Review of Astronomy and Astrophysics. 36: 435–506. Bibcode:1998ARA&A..36..435M. arXiv:astro-ph/9810070Freely accessible. doi:10.1146/annurev.astro.36.1.435. 
  10. ^ Lauer, T. R.; Faber, S. M.; Currie, D. G.; Ewald, S. P.; Groth, E. J.; Hester, J. J.; Holtzman, J. A.; Light, R. M.; O'Neil Jr, E. J.; Shaya, E. J.; Westphal, J. A. (1992). "Planetary camera observations of the central parsec of M32". Astronomical Journal. 104: 552–562. Bibcode:1992AJ....104..552L. doi:10.1086/116254. 
  11. ^ Kepple, George Robert; Sanner, Glen W. (1998). The Night Sky Observer's Guide. Vol. 1. Willmann-Bell. p. 17. ISBN 0-943396-58-1. 
  12. ^ Rudenko, Pavlo; Worthey, Guy; Mateo, Mario (2009). "Intermediate age clusters in the field containing M31 and M32 stars". The Astronomical Journal. 138 (6): 1985–1989. Bibcode:2009AJ....138.1985R. doi:10.1088/0004-6256/138/6/1985. 
  13. ^ Faber, S. M. (1973). "Tidal Origin of Elliptical Galaxies of High Surface Brightness". Astrophysical Journal. 179: 423–426. Bibcode:1973ApJ...179..423F. doi:10.1086/151881. 
  14. ^ Bekki, Kenji; Couch, Warrick J.; Drinkwater, Michael J.; Gregg, Michael D. (2001). "A New Formation Model for M32: A Threshed Early-Type Spiral Galaxy?". Astrophysical Journal Letters. 557 (1): L39. Bibcode:2001ApJ...557L..39B. arXiv:astro-ph/0107117Freely accessible. doi:10.1086/323075. 
  15. ^ Graham, A. W. (2002). "Evidence for an Outer Disk in the Prototype Compact Elliptical Galaxy M32". Astrophysical Journal Letters. 568 (1): L13. Bibcode:2002ApJ...568L..13G. arXiv:astro-ph/0202307Freely accessible. doi:10.1086/340274. 
  16. ^ Dierickx, M.; Blecha, L.; Loeb, A. (2014). "Signatures of the M31-M32 Galactic Collision". Astrophysical Journal. 788: L38. Bibcode:2014ApJ...788L..38D. arXiv:1405.3990Freely accessible. doi:10.1088/2041-8205/788/2/L38. 
  17. ^ Choi, P. I.; Guhathakurta, P.; Johnston, K. V. (2002). "Tidal Interaction of M32 and NGC 205 with M31: Surface Photometry and Numerical Simulations". Astronomical Journal. 124: 310–331. Bibcode:2002AJ....124..310C. arXiv:astro-ph/0111465Freely accessible. doi:10.1086/341041. 
  18. ^ Huxor, A. P.; Phillipps, S.; Price, J. (2013). "Discovery of an isolated compact elliptical galaxy in the field". Monthly Notices of the Royal Astronomical Society. 430: 1956–1960. Bibcode:2013MNRAS.430.1956H. arXiv:1302.6520Freely accessible. doi:10.1093/mnras/stt014. 
  19. ^ Ford, H. C.; Jacoby, G. H.; Jenner, D. C. (1978). "Planetary nebulae in local group galaxies. VI - an observational determination that M32 is in front of M31". Astrophysical Journal. 223: 94–97. Bibcode:1978ApJ...223...94F. doi:10.1086/156239. 
  20. ^ van Dokkum, P. G.; Franx, M. (1995). "Dust in the Cores of Early-Type Galaxies". Astronomical Journal. 110: 2027. Bibcode:1995AJ....110.2027V. arXiv:astro-ph/9507101Freely accessible. doi:10.1086/117667. 
  21. ^ Paulin-Henriksson, S.; Baillon, P.; Bouquet, A.; Carr, B. J.; Creze, M.; Evans, N. W.; Giraud-Heraud, Y.; Gould, A.; Hewett, P.; Kaplan, J.; Kerins, E.; Lastennet, E.; Le Du, Y.; Melchior, A.-L.; Smartt, S. J.; Valls-Gabaud, D.; Point-Agape Collaboration (2002). "A Candidate M31/M32 Intergalactic Microlensing Event". Astrophysical Journal Letters. 576: L121–L124. Bibcode:2002ApJ...576L.121P. arXiv:astro-ph/0206387Freely accessible. doi:10.1086/343887. 
  22. ^ Tonry, J. L. (1984). "Evidence for a central mass concentration in M32". Astrophysical Journal Letters. 283: L27. Bibcode:1984ApJ...283L..27T. doi:10.1086/184326. 
  23. ^ Bender, R.; Kormendy, J.; Dehnen, W. (1996). "Improved Evidence for a 3×106 M Black Hole in M32: Canada-France-Hawaii Telescope Spectroscopy with FWHM = 0.47" Resolution". Astrophysical Journal Letters. 464: L123. Bibcode:1996ApJ...464L.123B. doi:10.1086/310098. 
  24. ^ Joseph, C. L.; Merritt, D.; Olling, R.; Valluri, M.; Bender, R.; Bower, G.; Danks, A.; Gull, T.; Hutchings, J.; Kaiser, M. E.; Maran, S.; Weistrop, D.; Woodgate, B.; Malumuth, E.; Nelson, C.; Plait, P.; Lindler, D. (2001). "The Nuclear Dynamics of M32. I. Data and Stellar Kinematics". Astrophysical Journal. 550: 668–690. Bibcode:2001ApJ...550..668J. arXiv:astro-ph/0005530Freely accessible. doi:10.1086/319781. 
  25. ^ Verolme, E. K.; Cappellari, M.; Copin, Y.; van der Marel, R. P.; Bacon, R.; Bureau, M.; Davies, R. L.; Miller, B. M.; de Zeeuw, P. T. (2002). "A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass". Monthly Notices of the Royal Astronomical Society. 335: 517–525. Bibcode:2002MNRAS.335..517V. arXiv:astro-ph/0201086Freely accessible. doi:10.1111/j.1365-2966.2009.15832.x. 
  26. ^ Valluri, M.; Merritt, D.; Emsellem, E. (2004). "Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data". Astrophysical Journal. 602 (1): 66–92. Bibcode:2004ApJ...602...66V. arXiv:astro-ph/0210379Freely accessible. doi:10.1086/380896. 
  27. ^ van den Bosch, R. C. E.; de Zeeuw, P. T. (2010). "Estimating black hole masses in triaxial galaxies". Monthly Notices of the Royal Astronomical Society. 401: 1770–1780. Bibcode:2010MNRAS.401.1770V. arXiv:0910.0844Freely accessible. doi:10.1111/j.1365-2966.2009.15832.x. 
  28. ^ Ho, Luis C.; Terashima, Yuichi; Ulvestad, James S. (2003). "Detection of the "Active" Nucleus of M32". Astrophysical Journal. 589 (2): 783–789. Bibcode:2003ApJ...589..783H. arXiv:astro-ph/0303060Freely accessible. doi:10.1086/374738. 
  29. ^ Yang, Yang; Li, Zhiyuan; Sjouwerman, Loránt O.; Wang, Q. Daniel; Gu, Qiusheng; Kraft, Ralph P.; Yuan, Feng (2015). "Detection of a Compact Nuclear Radio Source in the Local Group Elliptical Galaxy M32". Astrophysical Journal Letters. 807 (1): L19. Bibcode:2015ApJ...807L..19Y. arXiv:1502.03231Freely accessible. doi:10.1088/2041-8205/807/1/L19. 

External links[edit]

Coordinates: Sky map 00h 42m 41.8s, 40° 51′ 55″