From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Lycopsis longirostris.JPG
Lycopsis longirostris, an extinct sparassodont, a relative of the marsupials
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Subclass: Theria
Clade: Metatheria
Huxley, 1880

Metatheria is a mammalian clade that includes all mammals more closely related to marsupials than to placentals. First proposed by Thomas Henry Huxley in 1880, it is a more inclusive group than the marsupials; it contains all marsupials as well as many extinct non-marsupial relatives.

There are three extant subclasses of mammals, one being metatherians:

  1. monotremes: egg laying mammals like the platypus and the echidna,
  2. metatheria: marsupials, which includes three American orders (Didelphimorphia, Paucituberculata and Microbiotheria) and four Australasian orders (Notoryctemorphia, Dasyuromorphia, Peramelemorphia and Diprotodontia),[4] and the
  3. eutherians: placental mammals, consisting of four superorders divided into twenty-one orders.[5]

Metatherians belong to a subgroup of the northern tribosphenic mammal clade or Boreosphenida. They differ from all other mammals in certain morphologies like their dental formula, which includes about five upper and four lower incisors, a canine, three premolars, and four molars.[6] Other characters include skeletal and anterior dentition, such as wrist and ankle apomorphies; all metatherians share derived pedal characters and calcaneal features.


Below is a metatherian cladogram from Wilson et al. (2016):[7]















Gurlin Tsav skull
























Below is a listing of metatherians that do not fall readily into well-defined groups.

Basal Metatheria

Ameridelphia incertae sedis:

Marsupialia incertae sedis:

Evolutionary history[edit]

The relationships between the three extant divisions of mammals (monotremes, marsupials, and placental mammals) was long a matter of debate among taxonomists.[8] Most morphological evidence comparing traits, such as the number and arrangement of teeth and the structure of the reproductive and waste elimination systems, favors a closer evolutionary relationship between marsupials and placental mammals than either has with the monotremes, as does most genetic and molecular evidence.[9]

Fossil metatherians are distinguished from eutherians by the form of their teeth: metatherians possess four pairs of molar teeth in each jaw, whereas eutherian mammals (including true placentals) never have more than three pairs.[10] Using this criterion, the earliest known metatherian was formerly considered to be Sinodelphys szalayi, which lived in China around 125 million years ago (mya).[11] This makes it a contemporary to some early eutherian species that have been found in the same area.[12] However, Bi et al. (2018) reinterpreted Sinodelphys as an early member of Eutheria.[3] They state that the oldest known metatherians are now the 110 million year old fossils from western North America.

The earliest definite marsupial fossil belongs to the species Peradectes minor, from the Paleocene of Montana, dated to about 65 million years ago.[1] From this point of origin in Laurasia, marsupials spread to South America, which was connected to North America until around 65 mya.[citation needed] Laurasian marsupials eventually died off; traditionally this has been assumed to be due to competition with placental mammals, but generally this is no longer considered to be the case, as metatherian diversity doesn't seem to be correlated to placental diversity.[13][14] Indeed, it appears metatherians suffered the heaviest mammalian casualties in the KT event, taking longer to recover than other groups.[15] In Laurasian landmasses, herpetotheriids and peradectids remained alive until the mid to late Miocene, with the peradectids Siamoperadectes and Sinoperadectes being the youngest Laurasian metatherians.


  1. ^ a b O'Leary, Maureen A.; Bloch, Jonathan I.; Flynn, John J.; Gaudin, Timothy J.; Giallombardo, Andres; Giannini, Norberto P.; Goldberg, Suzann L.; Kraatz, Brian P.; Luo, Zhe-Xi; Meng, Jin; Ni, Michael J.; Novacek, Fernando A.; Perini, Zachary S.; Randall, Guillermo; Rougier, Eric J.; Sargis, Mary T.; Silcox, Nancy b.; Simmons, Micelle; Spaulding, Paul M.; Velazco, Marcelo; Weksler, John R.; Wible, Andrea L.; Cirranello, A. L. (8 February 2013). "The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals". Science. 339 (6120): 662–667. Bibcode:2013Sci...339..662O. doi:10.1126/science.1229237. hdl:11336/7302. PMID 23393258. S2CID 206544776.
  2. ^ C.V. Bennett, P. Francisco, F. J. Goin, A. Goswami (2018). "Deep time diversity of metatherian mammals: implications for evolutionary history and fossil-record quality". Paleobiology. 44 (2): 171–198. doi:10.1017/pab.2017.34.{{cite journal}}: CS1 maint: uses authors parameter (link)
  3. ^ a b S. Bi, X. Zheng, X. Wang, N.E. Cignetti, S. Yang, J.R. Wible (2018). "An Early Cretaceous eutherian and the placental–marsupial dichotomy". Nature. 558 (7710): 390–395. Bibcode:2018Natur.558..390B. doi:10.1038/s41586-018-0210-3. PMID 29899454. S2CID 49183466.{{cite journal}}: CS1 maint: uses authors parameter (link)
  4. ^ Nilsson, Maria A. (2010). "Tracking Marsupial Evolution Using Archaic Genomic Retroposon Insertions". PLOS Biology. 8 (7): e1000436. doi:10.1371/journal.pbio.1000436. PMC 2910653. PMID 20668664.
  5. ^ Wilson, Don E.; Reeder, DeeAnn M. (editors) (2005). Microtus (Mynomes) townsendii. Wilson and Reeder’s Mammal Species of the World – A Taxonomic and Geographic Reference (Print) (Third ed.). Baltimore, Maryland: Johns Hopkins University Press/Bucknell University. pp. 2, 142. ISBN 978-0-8018-8221-0. Retrieved 21 October 2014. {{cite book}}: |first2= has generic name (help)
  6. ^ Szalay, Frederick S. (11 May 2006). Evolutionary History of the Marsupials and an Analysis of Osteological ... ISBN 9780521025928.
  7. ^ Wilson, G.P.; Ekdale, E.G.; Hoganson, J.W.; Calede, J.J.; Linden, A.V. (2016). "A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials". Nature Communications. 7: 13734. Bibcode:2016NatCo...713734W. doi:10.1038/ncomms13734. PMC 5155139. PMID 27929063.
  8. ^ Moyal, Ann Mozley (2004). Platypus: The Extraordinary Story of How a Curious Creature Baffled the World. Baltimore: The Johns Hopkins University Press. ISBN 978-0-8018-8052-0.
  9. ^ van Rheede, T.; Bastiaans, T.; Boone, D.; Hedges, S.; De Jong, W.; Madsen, O. (2006). "The platypus is in its place: nuclear genes and indels confirm the sister group relation of monotremes and therians". Molecular Biology and Evolution. 23 (3): 587–597. doi:10.1093/molbev/msj064. PMID 16291999.
  10. ^ Benton, Michael J. (1997). Vertebrate Palaeontology. London: Chapman & Hall. p. 306. ISBN 978-0-412-73810-4.
  11. ^ Rincon, Paul (12 December 2003). "Oldest Marsupial Ancestor Found, BBC, Dec 2003". BBC News. Retrieved 16 March 2010.
  12. ^ Hu, Yaoming; Meng, Jin; Li, Chuankui; Wang, Yuanqing (2010). "New basal eutherian mammal from the Early Cretaceous Jehol biota, Liaoning, China". Proceedings of the Royal Society B. 277 (1679): 229–236. doi:10.1098/rspb.2009.0203. PMC 2842663. PMID 19419990.
  13. ^ Sánchez-Villagra, Marcelo, Why are There Fewer Marsupials than Placentals? On the Relevance of Geography and Physiology to Evolutionary Patterns of Mammalian Diversity and Disparity, December 2013, Volume 20, Issue 4, pp 279–290
  14. ^ Carter, AM; Mess, AM (2013). "Conservation of placentation during the tertiary radiation of mammals in South America". J Morphol. 274 (5): 557–69. doi:10.1002/jmor.20120. PMID 23355381. S2CID 24575630.
  15. ^ Pires, Mathias M.; Rankin, Brian D.; Silvestro, Daniele; Quental, Tiago B. (2018). "Diversification dynamics of mammalian clades during the K–Pg mass extinction". Biology Letters. 14 (9): 2058. doi:10.1098/rsbl.2018.0458. PMC 6170748. PMID 30258031.