# Ricker wavelet

(Redirected from Mexican hat wavelet)
$\psi (t)={\frac {2}{{\sqrt {3\sigma }}\pi ^{1/4}}}\left(1-\left({\frac {t}{\sigma }}\right)^{2}\right)e^{-{\frac {t^{2}}{2\sigma ^{2}}}}$ $\psi (x,y)={\frac {1}{\pi \sigma ^{4}}}\left(1-{\frac {1}{2}}\left({\frac {x^{2}+y^{2}}{\sigma ^{2}}}\right)\right)e^{-{\frac {x^{2}+y^{2}}{2\sigma ^{2}}}}$ The multidimensional generalization of this wavelet is called the Laplacian of Gaussian function. In practice, this wavelet is sometimes approximated by the difference of Gaussians (DoG) function, because the DoG is separable and can therefore save considerable computation time in two or more dimensions.[citation needed][dubious ] The scale normalized Laplacian (in $L_{1}$ -norm) is frequently used as a blob detector and for automatic scale selection in computer vision applications; see Laplacian of Gaussian and scale space. The relation between this Laplacian of the Gaussian operator and the difference-of-Gaussians operator is explained in appendix A in Lindeberg (2015). The Mexican hat wavelet can also be approximated by derivatives of Cardinal B-Splines.