From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Mir-150 SS.png
Conserved secondary structure of miR-150 microRNA precursor
Symbol miR-150
Alt. Symbols MIR150
Rfam RF00767
miRBase MI0000479
miRBase family MIPF0000197
Entrez 406942
HUGO 31537
OMIM 610566
RefSeq NR_029703
Other data
RNA type miRNA
Domain(s) Mammalia
GO 0035195
SO 0001244
Locus Chr. 19 q13.33
PDB structures PDBe

miR-150 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer.[1] This sequence then associates with RISC which effects RNA interference.[2]

miR-150 functions in hematopoiesis; it regulates genes whose downstream products encourage differentiating stem cells towards becoming megakaryocytes rather than erythrocytes.[3][4] It is also thought to control B and T cell differentiation, alongside mir-155.[5][6]


The expression pattern of miR-150 varies during the differentiation of a hematopoietic stem cell lineage. Highest expression levels occur in mature, resting B and T cells but miR-150 is downregulated in their progenitor cells, including Th1 and Th2 cells.[5]

Role in cancer[edit]

miR-150 has been linked with a number of cancers. It is thought to promote cancer cell proliferation in gastric cancer and has also been found to be more than 50x overexpressed in osteosarcoma.[7] The expression of miR-150 was shown to regulate levels of GAB1 and FOXP1 proteins in malignant and normal B cells, and this influences their BCR signalling[8]


miR-150 levels in blood plasma can be indicative of early sepsis; it could have a future use therapeutically in treating the condition.[9] In addition, miR-150 is one of a number of microRNAs whose expression profile could be used as a biomarker of hepatocellular carcinoma.[10]


  1. ^ Ambros V (Dec 2001). "microRNAs: tiny regulators with great potential". Cell. 107 (7): 823–6. doi:10.1016/S0092-8674(01)00616-X. PMID 11779458. 
  2. ^ Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (Nov 2005). "Human RISC couples microRNA biogenesis and posttranscriptional gene silencing". Cell. 123 (4): 631–40. doi:10.1016/j.cell.2005.10.022. PMID 16271387. 
  3. ^ Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, Pretz J, Schlanger R, Wang JY, Mak RH, Dombkowski DM, Preffer FI, Scadden DT, Golub TR (Jun 2008). "MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors". Developmental Cell. 14 (6): 843–53. doi:10.1016/j.devcel.2008.03.012. PMC 2688789Freely accessible. PMID 18539114. 
  4. ^ Edelstein LC, Bray PF (May 2011). "MicroRNAs in platelet production and activation". Blood. 117 (20): 5289–96. doi:10.1182/blood-2011-01-292011. PMC 3109704Freely accessible. PMID 21364189. 
  5. ^ a b Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (Jan 2010). "The role of microRNAs in normal and malignant hematopoiesis". European Journal of Haematology. 84 (1): 1–16. doi:10.1111/j.1600-0609.2009.01348.x. PMID 19744129. 
  6. ^ Garzon R, Croce CM (Jul 2008). "MicroRNAs in normal and malignant hematopoiesis". Current Opinion in Hematology. 15 (4): 352–8. doi:10.1097/MOH.0b013e328303e15d. PMID 18536574. 
  7. ^ Lulla RR, Costa FF, Bischof JM, Chou PM, Bonaldo MF, Vanin EF, Soares MB (2011). "Identification of Differentially Expressed MicroRNAs in Osteosarcoma". Sarcoma. 2011: 732690. doi:10.1155/2011/732690. PMC 3140035Freely accessible. PMID 21789031. 
  8. ^ Mraz M, Chen L, Rassenti LZ, Ghia EM, Li H, Jepsen K, Smith EN, Messer K, Frazer KA, Kipps TJ (Jul 2014). "miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1". Blood. 124 (1): 84–95. doi:10.1182/blood-2013-09-527234. PMC 4125356Freely accessible. PMID 24787006. 
  9. ^ Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, Nicoloso MS, Barbarotto E, Popa M, Stanciulea O, Fernandez MH, Tulbure D, Bueso-Ramos CE, Negrini M, Calin GA (2009-10-12). Gold JA, ed. "MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis". PLOS ONE. 4 (10): e7405. doi:10.1371/journal.pone.0007405. PMC 2756627Freely accessible. PMID 19823581. 
  10. ^ Magrelli A, Azzalin G, Salvatore M, Viganotti M, Tosto F, Colombo T, Devito R, Di Masi A, Antoccia A, Lorenzetti S, Maranghi F, Mantovani A, Tanzarella C, Macino G, Taruscio D (Aug 2009). "Altered microRNA Expression Patterns in Hepatoblastoma Patients". Translational Oncology. 2 (3): 157–63. doi:10.1593/tlo.09124. PMC 2730135Freely accessible. PMID 19701500. 

Further reading[edit]

  • Tsitsiou E, Lindsay MA (Aug 2009). "microRNAs and the immune response". Current Opinion in Pharmacology. 9 (4): 514–20. doi:10.1016/j.coph.2009.05.003. PMC 2742742Freely accessible. PMID 19525145. 
  • Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S, Chen P, He C, You D, Zhang S, Wang J, Arnovitz S, Elkahloun A, Price C, Hong GM, Ren H, Kunjamma RB, Neilly MB, Matthews JM, Xu M, Larson RA, Le Beau MM, Slany RK, Liu PP, Lu J, Zhang J, He C, Chen J (Oct 2012). "Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia". Cancer Cell. 22 (4): 524–35. doi:10.1016/j.ccr.2012.08.028. PMID 23079661.