Michel Devoret

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Michel Devoret
Alma materUniversity of Paris-Sud
Ecole Nationale Superieure des Telecommunications
Known forQuantronics, Josephson quantum electron pump, Circuit quantum electrodynamics
AwardsJohn Bell Prize (2013)
Scientific career
FieldsExperimental Solid-state physics, Condensed Matter Physics
InstitutionsYale University
University of Paris-Sud
University of California Berkeley

Michel Devoret is a French physicist and F. W. Beinecke Professor of Applied Physics at Yale University. He also holds an appointment as the Director of the Applied Physics Nanofabrication Lab at Yale.[1] He is known for his pioneering work on the Josephson quantum electron pump as well as in groundbreaking contributions to initiating the fields of circuit quantum electrodynamics and quantronics.


Devoret was born in France. He graduated from Ecole Nationale Superieure des Telecommunications in Paris (1975) and went on to earn his PhD in physics from the University of Orsay (University of Paris-Sud) in 1982, while working in the molecular quantum physics group at Paris. After his doctoral work, he proceeded to post-doctoral training for two years, working on macroscopic quantum tunneling in John Clarke's laboratory at the University of California Berkeley.

Devoret's research has been focused on experimental solid state physics and condensed matter physics, with specific emphasis on circuit quantum electrodynamics and a field he and his colleagues initiated, known as "quantronics," the study of certain mesoscopic electronic effects in which collective degrees of freedom, such as electric currents and voltages behave quantum mechanically. In addition, his group has been carrying out investigations on single Cooper pair devices for fields such as quantum computation and metrology, and studying amplification, information, and noise in mesoscopic systems.

His work in association with well-known experimentalists in the field such as Rob Schoelkopf, Steven Girvin and Irfan Siddiqi has brought about valuable insights in quantum computing and in developing a new paradigm of circuit QED using superconducting electrical circuits. His recent work, in association with a colleague, A. Marblestone, has shown an exponential quantum enhancement in communication channels as a result of entanglement (see Quantum pseudo-telepathy).[2]

In addition to a number of awards, he has been awarded the John Bell Prize (shared with Rob Schoelkopf) in 2013 for "Fundamental and pioneering experimental advances in entangling superconducting qubits and microwave photons, and their application to quantum information processing."[3]


  • Fritz London Memorial Prize, 2014
  • John Bell Prize (shared with Robert Schoelkopf), 2013
  • Elected Membership, the French Academy of Sciences, 2007
  • Professorship at the College de France, 2007-2012
  • Europhysics-Agilent Prize (European Physical Society), 2004
  • Elected Membership, the American Academy of Arts and Sciences, 2003
  • Descartes-Huygens Prize, the Royal Academy of Science, Netherlands, 1996
  • Prize Ampère, the French Academy of Science, 1991

Noteworthy Publications[edit]

  • M.H. Devoret and R.J. Schoelkopf, Superconducting Circuits for Quantum Information: An Outlook, Science 339, 1169-1174 (2013).
  • B. Abdo, K. Sliwa, N. Bergeal, M. Hatridge, L. Frunzio, A.D. Stone, M.H. Devoret, Full Coherent Frequency Conversion Between Two Microwave Propagating Modes, Phys. Rev. Lett. 110, 173902 (2013).
  • K. Geerlings, Z. Leghtas, I.M. Pop, S. Shankar, L. Frunzio, R.J. Schoelkopf, M. Mirrahimi, M.H. Devoret, Demonstrating a Driven Reset Protocol for a Superconducting Qubit, Phys. Rev. Lett. 110 120501 (2013).
  • M. Hatridge and S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K.M. Sliwa, B. Abdo, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, M.H. Devoret, Quantum Back-Action of Variable-Strength Measurement, Science 339, 178-181 (2013).
  • A. Kamal, J. Clarke, M. H. Devoret, Noiseless non-reciprocity in a parametric active device, Nature Physics 7(4), 311-315 (2011).
  • N. Bergeal, F. Schackert, M. Metcalfe, L. Frunzio, D. Prober, R. J. Schoelkopf, S. M. Girvin and M.H. Devoret, Phase-preserving amplification near the quantum limit with a Josephson ring modulator, Nature 465, 64-70 (2010).
  • N. Bergeal, R. Vijay, V. E. Manucharyan, I. Siddiqi, R. J. Schoelkopf, S. M. Girvin, M. H. Devoret, Analog information processing at the quantum limit with a Josephson ring modulator, Nature Physics 6, 296-302 (2010).
  • V. E. Manucharyan, Jens Koch, L. Glazman, M.H. Devoret, Single Cooper pair circuit free of charge offsets, Science 326, 113-116 (2009).
  • M. Metcalfe, E. Boaknin, V. E. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier, Phys. Rev. B76, 014524 (2007)
  • M. Devoret and A. Roy, Introduction to Quantum-limited Parametric Amplification of Quantum Signals with Josephson Circuits, cond-mat arXiv:1605.00539, May 2016


  1. ^ "Michel Devoret - Department of Applied Physics".
  2. ^ A. Marblestone and M. Devoret, "Exponential Quantum Enhancement for Distributed Addition with Local Nonlinearity", Quantum Information Processing, Vol. 9, No.1 (2010)
  3. ^ "2013: Devoret and Schoelkopf".

External links[edit]