Mikhail Shifman

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Mikhail Shifman
M. Shifman, 2012.jpg
Born (1949-04-04) April 4, 1949 (age 69)
Riga, Latvia
Alma mater Moscow Institute of Physics and Technology
Known for Penguin mechanism
Quantum Chromodynamics
Invisible axion
Nonperturbative supersymmetry
Supersymmetric gauge theories

Humboldt Research Award (1993)
Sakurai Prize (1999)
Lilienfeld Prize (2006)
Chaires Blaise Pascal (2007)
Pomeranchuk Prize (2013)

Dirac Medal (2016)
Elected to the National Academy of Sciences (2018)
Scientific career
Fields Theoretical High Energy Physics
Institutions William I. Fine Theoretical Physics Institute, University of Minnesota
Institute for Theoretical and Experimental Physics (ITEP)
Academic advisors Boris L. Ioffe

Mikhail "Misha" Arkadyevich Shifman (Russian: Михаи́л Арка́дьевич Ши́фман; born 4 April 1949) is a theoretical physicist (high energy physics), formerly at Institute for Theoretical and Experimental Physics, Moscow, currently Ida Cohen Fine Professor of Theoretical Physics, William I. Fine Theoretical Physics Institute, University of Minnesota.

Scientific contributions[edit]

Shifman is known for a number of basic contributions to quantum chromodynamics, the theory of strong interactions, and to understanding of supersymmetric gauge dynamics. The most important results due to M. Shifman are diverse and include (i) the discovery of the penguin mechanism in the flavor-changing weak decays (1974);[1] (ii) introduction of the gluon condensate and development of the SVZ sum rules relating properties of the low-lying hadronic states to the vacuum condensates (1979);[2] (iii) introduction of the invisible axion (1980)[3] (iv) first exact results in supersymmetric Yang-Mills theories (NSVZ beta function, gluino condensate,1983–1988);[4] (v) heavy quark theory based on the operator product expansion (1985–1995);[5] (vi) critical domain walls (D-brane analogs) in super-Yang-Mills (1996);[6] (vii) non-perturbative (exact) planar equivalence between super-Yang-Mills and orientifold non-supersymmetric theories (2003);[7] (viii) non-Abelian flux tubes and confined monopoles (2004 till present).[8] His paper with A. Vainshtein and Zakharov on the SVZ sum rules[2] is among the all-time top cited papers in high-energy physics.

Honors and awards[edit]

Mikhail Shifman received the Alexander-von-Humboldt Award in 1993, the Sakurai Prize in 1999, the Ida Cohen Fine Chair in Theoretical Physics [9][10] and the Julius Edgar Lilienfeld Prize in 2006; he is the 2007 laureate of the Blaise Pascal Chair, 2013 Pomeranchuk Prize and he was awarded the 2016 Dirac Medal and Prize.[11] In May 2018, M. Shifman was elected to the US National Academy of Sciences. He is also a Fellow of the American Physical Society.

Selected books[edit]

See also[edit]


  1. ^ M. Shifman, A. Vainshtein, and V. Zakharov; Zakharov; Shifman (1975). "A possible mechanism for the Δ T=1/2 rule in nonleptonic decays of strange particles" (PDF). JETP Letters. 22: 55. Bibcode:1975JETPL..22...55V. 
    M. Shifman; A. Vainshtein & V. Zakharov (1977). "Asymptotic freedom, light quarks and the origin of the ? rule in the non-leptonic decays of strange particles". Nuclear Physics B. 120 (2): 316. Bibcode:1977NuPhB.120..316S. doi:10.1016/0550-3213(77)90046-3. 
    M. Shifman; A. Vainshtein & V. Zakharov (1977). Soviet Physics JETP. 45: 670.  Missing or empty |title= (help)
  2. ^ a b M. Shifman; A. Vainshtein & V. Zakharov (1979). "QCD and resonance physics. theoretical foundations". Nuclear Physics B. 147 (5): 385. Bibcode:1979NuPhB.147..385S. doi:10.1016/0550-3213(79)90022-1. 
  3. ^ M. Shifman; A. Vainshtein & V. Zakharov (1980). "Can confinement ensure natural CP invariance of strong interactions?". Nuclear Physics B. 166 (3): 493. Bibcode:1980NuPhB.166..493S. doi:10.1016/0550-3213(80)90209-6. 
  4. ^ V. Novikov; M. Shifman; A. Vainshtein & V. Zakharov (1983). "Exact Gell-Mann-Low function of supersymmetric Yang-Mills theories from instanton calculus". Nuclear Physics B. 229 (2): 381. Bibcode:1983NuPhB.229..381N. doi:10.1016/0550-3213(83)90338-3. 
    V. Novikov; M. Shifman; A. Vainshtein & V. Zakharov (1986). "The beta function in supersymmetric gauge theories. Instantons versus traditional approach". Physics Letters B. 166 (3): 329. Bibcode:1986PhLB..166..329N. doi:10.1016/0370-2693(86)90810-5. 
    M. Shifman & A. Vainshtein (1988). "On gluino condensation in supersymmetric gauge theories with SU(N) and O(N) groups". Nuclear Physics B. 296 (2): 445. Bibcode:1988NuPhB.296..445S. doi:10.1016/0550-3213(88)90680-3. 
  5. ^ M. Shifman; M. Voloshin (1987). Soviet Journal of Nuclear Physics. 45: 292.  Missing or empty |title= (help)
    M. Shifman; M. Voloshin (1988). Soviet Journal of Nuclear Physics. 47: 511.  Missing or empty |title= (help)
    I. Bigi; M. Shifman; N. Uraltsev; A. Vainshtein (1993). "QCD predictions for lepton spectra in inclusive heavy flavor decays". Physical Review Letters. 71 (4): 496–499. arXiv:hep-ph/9304225Freely accessible. Bibcode:1993PhRvL..71..496B. doi:10.1103/PhysRevLett.71.496. PMID 10055291. 
  6. ^ G. Dvali & M. Shifman (1997). "Full Length Article". Physics Letters B. 396: 64. arXiv:hep-th/9612128Freely accessible. Bibcode:1997PhLB..396...64D. doi:10.1016/S0370-2693(97)00131-7. 
  7. ^ A. Armoni; M. Shifman & G. Veneziano (2003). "Exact results in non-supersymmetric large N orientifold field theories". Nuclear Physics B. 667: 170. arXiv:hep-th/0302163Freely accessible. Bibcode:2003NuPhB.667..170A. doi:10.1016/S0550-3213(03)00538-8. 
  8. ^ M. Shifman & A. Yung (2004). "Non-Abelian string junctions as confined monopoles". Physical Review D. 70 (4): 045004. arXiv:hep-th/0403149Freely accessible. Bibcode:2004PhRvD..70d5004S. doi:10.1103/PhysRevD.70.045004. 
  9. ^ UMN BIO Physics Shifman
  10. ^ UMN CSE Endowed Chairs and Professorship
  11. ^ http://www.ictp.it/about-ictp/prizes-awards/the-dirac-medal/the-medallists/dirac-medallists-2016.aspx

External links[edit]