Minkowski functional

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, in the field of functional analysis, a Minkowski functional is a function that recovers a notion of distance on a linear space.

Let K be a symmetric (i.e. if it contains x it also contains -x) convex body in a linear space V. We define a function p on V as

This is the Minkowski functional of K.[1] Usually it is assumed that K is such that the set of is never empty, but sometimes the set is allowed to be empty and then p(x) is defined as infinity.


Example 1[edit]

Consider a normed vector space , with the norm ||·||. Let be the unit ball in . Define a function by

One can see that , i.e. is just the norm on . The function p is a special case of a Minkowski functional.

Example 2[edit]

Let X be a vector space without topology with underlying scalar field . Take , the algebraic dual of , i.e. is a linear functional on . Fix . Let the set be given by

Again we define


The function p(x) is another instance of a Minkowski functional. It has the following properties:

  1. It is subadditive: ,
  2. It is homogeneous: for all ,
  3. It is nonnegative.

Therefore, is a seminorm on , with an induced topology. This is characteristic of Minkowski functionals defined via "nice" sets. There is a one-to-one correspondence between seminorms and the Minkowski functional given by such sets. What is meant precisely by "nice" is discussed in the section below.

Notice that, in contrast to a stronger requirement for a norm, need not imply . In the above example, one can take a nonzero from the kernel of . Consequently, the resulting topology need not be Hausdorff.


The above examples suggest that, given a (complex or real) vector space X and a subset K, one can define a corresponding Minkowski functional


which is often called the gauge of .

It is implicitly assumed in this definition that 0 ∈ K and the set {r > 0: xr K} is nonempty for every x. In order for pK to have the properties of a seminorm, additional restrictions must be imposed on K. These conditions are listed below.

  1. The set K being convex implies the subadditivity of pK.
  2. Homogeneity, i.e. pK(α x) = |α| pK(x) for all α, is ensured if K is balanced, meaning α KK for all |α| ≤ 1.

A set K with these properties is said to be absolutely convex.

Convexity of K[edit]

A simple geometric argument that shows convexity of K implies subadditivity is as follows. Suppose for the moment that pK(x) = pK(y) = r. Then for all ε > 0, we have x, y ∈ (r + ε) K = K' . The assumption that K is convex means K' is also. Therefore, ½ x + ½ y is in K' . By definition of the Minkowski functional pK, one has

But the left hand side is ½ pK(x + y), i.e. the above becomes

This is the desired inequality. The general case pK(x) > pK(y) is obtained after the obvious modification.

Note Convexity of K, together with the initial assumption that the set {r > 0: xr K} is nonempty, implies that K is absorbing.

Balancedness of K[edit]

Notice that K being balanced implies that


See also[edit]


  1. ^ Thompson (1996) p.17


  • Thompson, Anthony C. (1996). Minkowski Geometry. Encyclopedia of Mathematics and Its Applications. Cambridge University Press. ISBN 0-521-40472-X.