In mathematical analysis , the Minkowski inequality establishes that the Lp spaces are normed vector spaces . Let S be a measure space , let 1 ≤ p ≤ ∞ and let f and g be elements of Lp (S ). Then f + g is in Lp (S ), and we have the triangle inequality
‖
f
+
g
‖
p
≤
‖
f
‖
p
+
‖
g
‖
p
{\displaystyle \|f+g\|_{p}\leq \|f\|_{p}+\|g\|_{p}}
with equality for 1 < p < ∞ if and only if f and g are positively linearly dependent , i.e., f = λg for some λ ≥ 0 or g = 0 . Here, the norm is given by:
‖
f
‖
p
=
(
∫
|
f
|
p
d
μ
)
1
p
{\displaystyle \|f\|_{p}=\left(\int |f|^{p}d\mu \right)^{\frac {1}{p}}}
if p < ∞, or in the case p = ∞ by the essential supremum
‖
f
‖
∞
=
e
s
s
s
u
p
x
∈
S
|
f
(
x
)
|
.
{\displaystyle \|f\|_{\infty }=\operatorname {ess\ sup} _{x\in S}|f(x)|.}
The Minkowski inequality is the triangle inequality in Lp (S ). In fact, it is a special case of the more general fact
‖
f
‖
p
=
sup
‖
g
‖
q
=
1
∫
|
f
g
|
d
μ
,
1
p
+
1
q
=
1
{\displaystyle \|f\|_{p}=\sup _{\|g\|_{q}=1}\int |fg|d\mu ,\qquad {\tfrac {1}{p}}+{\tfrac {1}{q}}=1}
where it is easy to see that the right-hand side satisfies the triangular inequality.
Like Hölder's inequality , the Minkowski inequality can be specialized to sequences and vectors by using the counting measure :
(
∑
k
=
1
n
|
x
k
+
y
k
|
p
)
1
/
p
≤
(
∑
k
=
1
n
|
x
k
|
p
)
1
/
p
+
(
∑
k
=
1
n
|
y
k
|
p
)
1
/
p
{\displaystyle {\biggl (}\sum _{k=1}^{n}|x_{k}+y_{k}|^{p}{\biggr )}^{1/p}\leq {\biggl (}\sum _{k=1}^{n}|x_{k}|^{p}{\biggr )}^{1/p}+{\biggl (}\sum _{k=1}^{n}|y_{k}|^{p}{\biggr )}^{1/p}}
for all real (or complex ) numbers x 1 , ..., x n , y 1 , ..., y n and where n is the cardinality of S (the number of elements in S ).
First, we prove that f +g has finite p -norm if f and g both do, which follows by
|
f
+
g
|
p
≤
2
p
−
1
(
|
f
|
p
+
|
g
|
p
)
.
{\displaystyle |f+g|^{p}\leq 2^{p-1}(|f|^{p}+|g|^{p}).}
Indeed, here we use the fact that
h
(
x
)
=
x
p
{\displaystyle h(x)=x^{p}}
is convex over R + (for p > 1 ) and so, by the definition of convexity,
|
1
2
f
+
1
2
g
|
p
≤
|
1
2
|
f
|
+
1
2
|
g
|
|
p
≤
1
2
|
f
|
p
+
1
2
|
g
|
p
.
{\displaystyle \left|{\tfrac {1}{2}}f+{\tfrac {1}{2}}g\right|^{p}\leq \left|{\tfrac {1}{2}}|f|+{\tfrac {1}{2}}|g|\right|^{p}\leq {\tfrac {1}{2}}|f|^{p}+{\tfrac {1}{2}}|g|^{p}.}
This means that
|
f
+
g
|
p
≤
1
2
|
2
f
|
p
+
1
2
|
2
g
|
p
=
2
p
−
1
|
f
|
p
+
2
p
−
1
|
g
|
p
.
{\displaystyle |f+g|^{p}\leq {\tfrac {1}{2}}|2f|^{p}+{\tfrac {1}{2}}|2g|^{p}=2^{p-1}|f|^{p}+2^{p-1}|g|^{p}.}
Now, we can legitimately talk about
(
‖
f
+
g
‖
p
)
{\displaystyle (\|f+g\|_{p})}
. If it is zero, then Minkowski's inequality holds. We now assume that
(
‖
f
+
g
‖
p
)
{\displaystyle (\|f+g\|_{p})}
is not zero. Using the triangle inequality and then Hölder's inequality , we find that
‖
f
+
g
‖
p
p
=
∫
|
f
+
g
|
p
d
μ
=
∫
|
f
+
g
|
⋅
|
f
+
g
|
p
−
1
d
μ
≤
∫
(
|
f
|
+
|
g
|
)
|
f
+
g
|
p
−
1
d
μ
=
∫
|
f
|
|
f
+
g
|
p
−
1
d
μ
+
∫
|
g
|
|
f
+
g
|
p
−
1
d
μ
≤
(
(
∫
|
f
|
p
d
μ
)
1
p
+
(
∫
|
g
|
p
d
μ
)
1
p
)
(
∫
|
f
+
g
|
(
p
−
1
)
(
p
p
−
1
)
d
μ
)
1
−
1
p
Hölder's inequality
=
(
‖
f
‖
p
+
‖
g
‖
p
)
‖
f
+
g
‖
p
p
‖
f
+
g
‖
p
{\displaystyle {\begin{aligned}\|f+g\|_{p}^{p}&=\int |f+g|^{p}\,\mathrm {d} \mu \\&=\int |f+g|\cdot |f+g|^{p-1}\,\mathrm {d} \mu \\&\leq \int (|f|+|g|)|f+g|^{p-1}\,\mathrm {d} \mu \\&=\int |f||f+g|^{p-1}\,\mathrm {d} \mu +\int |g||f+g|^{p-1}\,\mathrm {d} \mu \\&\leq \left(\left(\int |f|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}+\left(\int |g|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\right)\left(\int |f+g|^{(p-1)\left({\frac {p}{p-1}}\right)}\,\mathrm {d} \mu \right)^{1-{\frac {1}{p}}}&&{\text{ Hölder's inequality}}\\&=\left(\|f\|_{p}+\|g\|_{p}\right){\frac {\|f+g\|_{p}^{p}}{\|f+g\|_{p}}}\end{aligned}}}
We obtain Minkowski's inequality by multiplying both sides by
‖
f
+
g
‖
p
‖
f
+
g
‖
p
p
.
{\displaystyle {\frac {\|f+g\|_{p}}{\|f+g\|_{p}^{p}}}.}
Minkowski's integral inequality [ edit ]
Suppose that (S 1 , μ 1 ) and (S 2 , μ 2 ) are two σ -finite measure spaces and F ′ : S 1 × S 2 → R is measurable. Then Minkowski's integral inequality is (Stein 1970 , §A.1), (Hardy, Littlewood & Pólya 1988 , Theorem 202):
[
∫
S
2
|
∫
S
1
F
(
x
,
y
)
μ
1
(
d
x
)
|
p
μ
2
(
d
y
)
]
1
p
≤
∫
S
1
(
∫
S
2
|
F
(
x
,
y
)
|
p
μ
2
(
d
y
)
)
1
p
μ
1
(
d
x
)
,
{\displaystyle \left[\int _{S_{2}}\left|\int _{S_{1}}F(x,y)\,\mu _{1}(\mathrm {d} x)\right|^{p}\mu _{2}(\mathrm {d} y)\right]^{\frac {1}{p}}\leq \int _{S_{1}}\left(\int _{S_{2}}|F(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\mu _{1}(\mathrm {d} x),}
with obvious modifications in the case p = ∞ . If p > 1 , and both sides are finite, then equality holds only if |F (x , y ) | = φ (x )ψ (y ) a.e. for some non-negative measurable functions φ and ψ .
If μ1 is the counting measure on a two-point set S 1 = {1,2}, then Minkowski's integral inequality gives the usual Minkowski inequality as a special case: for putting f i (y ) = F (i , y ) for i = 1, 2 , the integral inequality gives
‖
f
1
+
f
2
‖
p
=
(
∫
S
2
|
∫
S
1
F
(
x
,
y
)
μ
1
(
d
x
)
|
p
μ
2
(
d
y
)
)
1
p
≤
∫
S
1
(
∫
S
2
|
F
(
x
,
y
)
|
p
μ
2
(
d
y
)
)
1
p
μ
1
(
d
x
)
=
‖
f
1
‖
p
+
‖
f
2
‖
p
.
{\displaystyle \|f_{1}+f_{2}\|_{p}=\left(\int _{S_{2}}\left|\int _{S_{1}}F(x,y)\,\mu _{1}(\mathrm {d} x)\right|^{p}\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\leq \int _{S_{1}}\left(\int _{S_{2}}|F(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\mu _{1}(\mathrm {d} x)=\|f_{1}\|_{p}+\|f_{2}\|_{p}.}
This notation has been generalized to
‖
f
‖
p
,
q
=
(
∫
R
m
[
∫
R
n
|
f
(
x
,
y
)
|
q
d
y
]
p
q
d
x
)
1
p
{\displaystyle \|f\|_{p,q}=\left(\int _{\mathbb {R} ^{m}}\left[\int _{\mathbb {R} ^{n}}|f(x,y)|^{q}\mathrm {d} y\right]^{\frac {p}{q}}\mathrm {d} x\right)^{\frac {1}{p}}}
for
f
:
R
m
+
n
→
E
{\displaystyle f:\mathbb {R} ^{m+n}\to E}
, with
L
p
,
q
(
R
m
+
n
,
E
)
=
{
f
∈
E
R
m
+
n
:
‖
f
‖
p
,
q
<
∞
}
{\displaystyle {\mathcal {L}}_{p,q}(\mathbb {R} ^{m+n},E)=\{f\in E^{\mathbb {R} ^{m+n}}:\|f\|_{p,q}<\infty \}}
.
See also [ edit ]
References [ edit ]
Hardy, G. H. ; Littlewood, J. E. ; Pólya, G. (1952). Inequalities . Cambridge Mathematical Library (second ed.). Cambridge: Cambridge University Press. ISBN 0-521-35880-9 .
Minkowski, H. (1953). "Geometrie der Zahlen". Chelsea .
Stein, Elias (1970). "Singular integrals and differentiability properties of functions". Princeton University Press .
M.I. Voitsekhovskii (2001) [1994], "Minkowski inequality" , in Hazewinkel, Michiel (ed.), Encyclopedia of Mathematics , Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
Arthur Lohwater (1982). "Introduction to Inequalities".