Mittag-Leffler function

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
The Mittag-Leffler function can be used to interpolate continuously between a Gaussian and a Lorentzian function.

In mathematics, the Mittag-Leffler function Eα,β is a special function, a complex function which depends on two complex parameters α and β. It may be defined by the following series when the real part of α is strictly positive:

where is the Gamma function .

In the case α and β are real and positive, the series converges for all values of the argument z, so the Mittag-Leffler function is an entire function. This function is named after Gösta Mittag-Leffler. This class of functions are important in the theory of the fractional calculus.

For α > 0, the Mittag-Leffler function Eα,1 is an entire function of order 1/α, and is in some sense the simplest entire function of its order.

The Mittag-Leffler function satisfies the recurrence property

from which the Poincaré asymptotic expansion

follows, which is true for .

Special cases[edit]

For we find

The sum of a geometric progression:

Exponential function:

Error function:

Hyperbolic cosine:

For , the integral

gives, respectively

Mittag-Leffler's integral representation[edit]

where the contour C starts and ends at −∞ and circles around the singularities and branch points of the integrand.

Related to the Laplace transform and Mittag-Leffler summation is the expression

and

on the negative axis.

See also[edit]

References[edit]

  • Mittag-Leffler, M.G.: Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 137, 554–558 (1903)
  • Mittag-Leffler, M.G.: Sopra la funzione E˛.x/. Rend. R. Acc. Lincei, (Ser. 5) 13, 3–5 (1904)
  • Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler Functions, Related Topics and Applications (Springer, New York, 2014) 443 pages ISBN 978-3-662-43929-6
  • Olver, F. W. J.; Maximon, L. C. (2010), "Mittag-Leffler function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248
  • Igor Podlubny (1998). "chapter 1". Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering. Academic Press. ISBN 0-12-558840-2.
  • Kai Diethelm (2010). "chapter 4". The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Lecture Notes in Mathematics. Heidelberg and New York: Springer-Verlag. ISBN 978-3-642-14573-5.
  • Eric W. Weisstein, "Mittag-Leffler function, [1]", From MathWorld—A Wolfram Web Resource.
  • H. J. Haubold, A. M. Mathai, R. K. Saxena Mittag-Leffler Functions and Their Applications [2]

External links[edit]

This article incorporates material from Mittag-Leffler function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.