# Modular lambda function

In mathematics, the elliptic modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve ${\displaystyle \mathbb {C} /\langle 1,\tau \rangle }$, where the map is defined as the quotient by the [−1] involution.

The q-expansion, where ${\displaystyle q=e^{\pi i\tau }}$ is the nome, is given by:

${\displaystyle \lambda (\tau )=16q-128q^{2}+704q^{3}-3072q^{4}+11488q^{5}-38400q^{6}+\dots }$.

By symmetrizing the lambda function under the canonical action of the symmetric group S3 on X(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group ${\displaystyle SL_{2}(\mathbb {Z} )}$, and it is in fact Klein's modular j-invariant.

## Modular properties

The function ${\displaystyle \lambda (\tau )}$ is invariant under the group generated by[1]

${\displaystyle \tau \mapsto \tau +2\ ;\ \tau \mapsto {\frac {\tau }{1-2\tau }}\ .}$

The generators of the modular group act by[2]

${\displaystyle \tau \mapsto \tau +1\ :\ \lambda \mapsto {\frac {\lambda }{\lambda -1}}\,;}$
${\displaystyle \tau \mapsto -{\frac {1}{\tau }}\ :\ \lambda \mapsto 1-\lambda \ .}$

Consequently, the action of the modular group on ${\displaystyle \lambda (\tau )}$ is that of the anharmonic group, giving the six values of the cross-ratio:[3]

${\displaystyle \left\lbrace {\lambda ,{\frac {1}{1-\lambda }},{\frac {\lambda -1}{\lambda }},{\frac {1}{\lambda }},{\frac {\lambda }{\lambda -1}},1-\lambda }\right\rbrace \ .}$

## Other appearances

### Other elliptic functions

It is the square of the Jacobi modulus,[4] that is, ${\displaystyle \lambda (\tau )=k^{2}(\tau )}$. In terms of the Dedekind eta function ${\displaystyle \eta (\tau )}$ and theta functions,[4]

${\displaystyle \lambda (\tau )={\Bigg (}{\frac {{\sqrt {2}}\,\eta ({\tfrac {\tau }{2}})\eta ^{2}(2\tau )}{\eta ^{3}(\tau )}}{\Bigg )}^{8}={\frac {\theta _{2}^{4}(0,\tau )}{\theta _{3}^{4}(0,\tau )}}}$

and,

${\displaystyle {\frac {1}{{\big (}\lambda (\tau ){\big )}^{1/4}}}-{\big (}\lambda (\tau ){\big )}^{1/4}={\frac {1}{2}}\left({\frac {\eta ({\tfrac {\tau }{4}})}{\eta (\tau )}}\right)^{4}=2\,{\frac {\theta _{4}^{2}(0,{\tfrac {\tau }{2}})}{\theta _{2}^{2}(0,{\tfrac {\tau }{2}})}}}$

where[5] for the nome ${\displaystyle q=e^{\pi i\tau }}$,

${\displaystyle \theta _{2}(0,\tau )=\sum _{n=-\infty }^{\infty }q^{\left({n+{\frac {1}{2}}}\right)^{2}}}$
${\displaystyle \theta _{3}(0,\tau )=\sum _{n=-\infty }^{\infty }q^{n^{2}}}$
${\displaystyle \theta _{4}(0,\tau )=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n^{2}}}$

In terms of the half-periods of Weierstrass's elliptic functions, let ${\displaystyle [\omega _{1},\omega _{2}]}$ be a fundamental pair of periods with ${\displaystyle \tau ={\frac {\omega _{2}}{\omega _{1}}}}$.

${\displaystyle e_{1}=\wp \left({\frac {\omega _{1}}{2}}\right),e_{2}=\wp \left({\frac {\omega _{2}}{2}}\right),e_{3}=\wp \left({\frac {\omega _{1}+\omega _{2}}{2}}\right)}$

we have[4]

${\displaystyle \lambda ={\frac {e_{3}-e_{2}}{e_{1}-e_{2}}}\,.}$

Since the three half-period values are distinct, this shows that λ does not take the value 0 or 1.[4]

The relation to the j-invariant is[6][7]

${\displaystyle j(\tau )={\frac {256(1-\lambda +\lambda ^{2})^{3}}{\lambda ^{2}(1-\lambda )^{2}}}\ .}$

which is the j-invariant of the elliptic curve of Legendre form ${\displaystyle y^{2}=x(x-1)(x-\lambda )}$

### Little Picard theorem

The lambda function is used in the original proof of the Little Picard theorem, that an entire non-constant function on the complex plane cannot omit more than one value. This theorem was proved by Picard in 1879.[8] Suppose if possible that f is entire and does not take the values 0 and 1. Since λ is holomorphic, it has a local holomorphic inverse ω defined away from 0,1,∞. Consider the function z → ω(f(z)). By the Monodromy theorem this is holomorphic and maps the complex plane C to the upper half plane. From this it is easy to construct a holomorphic function from C to the unit disc, which by Liouville's theorem must be constant.[9]

### Moonshine

The function ${\displaystyle {\frac {16}{\lambda (2\tau )}}-8}$ is the normalized Hauptmodul for the group ${\displaystyle \Gamma _{0}(4)}$, and its q-expansion ${\displaystyle q^{-1}+20q-62q^{3}+\dots }$, where ${\displaystyle q=e^{2\pi i\tau }}$, is the graded character of any element in conjugacy class 4C of the monster group acting on the monster vertex algebra.

## Footnotes

1. ^ Chandrasekharan (1985) p.115
2. ^ Chandrasekharan (1985) p.109
3. ^ Chandrasekharan (1985) p.110
4. ^ a b c d Chandrasekharan (1985) p.108
5. ^ Chandrasekharan (1985) p.63
6. ^ Chandrasekharan (1985) p.117
7. ^ Rankin (1977) pp.226–228
8. ^ Chandrasekharan (1985) p.121
9. ^ Chandrasekharan (1985) p.118

## References

• Abramowitz, Milton; Stegun, Irene A., eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, ISBN 978-0-486-61272-0, Zbl 0543.33001
• Chandrasekharan, K. (1985), Elliptic Functions, Grundlehren der mathematischen Wissenschaften, 281, Springer-Verlag, pp. 108–121, ISBN 3-540-15295-4, Zbl 0575.33001
• Conway, John Horton; Norton, Simon (1979), "Monstrous moonshine", Bulletin of the London Mathematical Society, 11 (3): 308–339, doi:10.1112/blms/11.3.308, MR 0554399, Zbl 0424.20010
• Rankin, Robert A. (1977), Modular Forms and Functions, Cambridge University Press, ISBN 0-521-21212-X, Zbl 0376.10020
• Reinhardt, W. P.; Walker, P. L. (2010), "Elliptic Modular Function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248