Molybdenum disulfide

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Molybdenum disulfide
Molybdenum disulfide
Molybdenite-3D-balls.png
Names
IUPAC name
Molybdenum disulfide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.013.877
RTECS number QA4697000
Properties
MoS
2
Molar mass 160.07 g/mol[1]
Appearance black/lead-gray solid
Density 5.06 g/cm3[1]
Melting point 1,185 °C (2,165 °F; 1,458 K) or higher[4]
insoluble[1]
Solubility decomposed by aqua regia, hot sulfuric acid, nitric acid
insoluble in dilute acids
Band gap 1.23 eV (indirect, 3R or 2H bulk)[2]
~1.8 eV (direct, monolayer)[3]
Structure
hP6, P6
3
/mmc
, No. 194 (2H)

hR9, R3m, No 160 (3R)[5]

a = 0.3161 nm (2H), 0.3163 nm (3R), c = 1.2295 nm (2H), 1.837 (3R)
Trigonal prismatic (MoIV)
Pyramidal (S2−)
Hazards
Safety data sheet External MSDS
Related compounds
Other anions
Molybdenum(IV) oxide
Molybdenum diselenide
Molybdenum ditelluride
Other cations
Tungsten disulfide
Related lubricants
Graphite
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Molybdenum disulfide is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is MoS
2
.

The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as the mineral molybdenite, the principal ore for molybdenum.[6] MoS
2
is relatively unreactive. It is unaffected by dilute acids and oxygen. In appearance and feel, molybdenum disulfide is similar to graphite. It is widely used as a solid lubricant because of its low friction and robustness. Bulk MoS
2
is a diamagnetic, indirect bandgap semiconductor similar to silicon, with a bandgap of 1.23 eV.[2]

Production[edit]

Molybdenite

MoS2 is naturally found as either molybdenite, a crystalline mineral, or jordisite, a rare low temperature form of molybdenite.[7] Molybdenite ore is processed by flotation to give relatively pure MoS
2
. The main contaminant is carbon. MoS
2
also arises by thermal treatment of virtually all molybdenum compounds with hydrogen sulfide or elemental sulfur and can be produced by metathesis reactions from molybdenum pentachloride.[8]

Structure and Physical Properties[edit]

Electron microscopy of antisites (a, Mo substitutes for S) and vacancies (b, missing S atoms) in a monolayer of molybdenum disulfide. Scale bar: 1 nm.[9]

Crystalline phases[edit]

All forms of MoS
2
have a layered structure, in which a plane of molybdenum atoms is sandwiched by planes of sulfide ions. These three strata form a monolayer of MoS2. Bulk MoS2 consists of stacked monolayers, which are held together by weak van der Waals interactions.

Crystalline MoS2 is found in nature as one of two phases, 2H-MoS2 and 3R-MoS2], where the "H" and the "R" indicate hexagonal and rhombohedral symmetry, respectively. In both of these structures, each molybdenum atom exists at the center of a trigonal prismatic coordination sphere and is covalently bonded to six sulfide ions. Each sulfur atom has pyramidal coordination and is bonded to three molybdenum atoms. Both the 2H- and 3R-phases are semiconducting.[10]

A third, metastable crystalline phase known as 1T-MoS2] was discovered by intercalating 2H-MoS2 with alkali metals.[11] This phase has tetragonal symmetry and is metallic. The 1T-phase can be stabilized through doping with electron donors like rhenium,[12] or converted back to the 2H-phase by microwave radiation.[13]

Allotropes[edit]

Nanotube-like and buckyball-like molecules composed of MoS
2
are known.[14]

Exfoliated MoS2 flakes[edit]

While bulk MoS2 in the 2H-phase is known to be an indirect-band gap semiconductor, monolayer MoS2 has a direct band gap. The layer-dependent optoelectronic properties of MoS2 have promoted much research in 2-dimensional MoS2-based devices. 2D MoS2 can be produced by exfoliating bulk crystals to produce single-layer to few-layer flakes either through a dry, micromechanical process or through solution processing.

Micromechanical exfoliation, also pragmatically called "Scotch-tape exfoliation", involves using an adhesive material to repeatedly peel apart a layered crystal by overcoming the van der Waals forces. The crystal flakes can then be transferred from the adhesive film to a substrate. This facile method was first used by Novoselov and Geim to obtain graphene from graphite crystals.[15] While Scotch tape is generally used as the adhesive tape, PDMS stamps can also satisfactorily cleave MoS2 if it is important to avoid contaminating the flakes with residual adhesive.[16]

Liquid-phase exfoliation can also be used to produce monolayer to multi-layer MoS2 in solution. A few methods include lithium intercalation[17] to delaminate the layers and sonication in a high-surface tension solvent.[18][19]

Mechanical properties[edit]

MoS2 excels as a lubricating material (see below) due to its layered structure and low coefficient of friction. Interlayer sliding dissipates energy when a shear stress is applied to the material. Extensive work has been performed to characterize the coefficient of friction and shear strength of MoS2 in various atmospheres.[20] The shear strength of MoS2 increases as the coefficient of friction increases. This property is called superlubricity. At ambient conditions, the coefficient of friction for MoS2 was determined to be 0.150, with a corresponding estimated shear strength of 56.0 MPa.[20] Direct methods of measuring the shear strength indicate that the value is closer to 25.3 MPa.[21]

The wear resistance of MoS2 in lubricating applications can be increased by doping MoS2 with chromium. Microindentation experiments on nanopillars of Cr-doped MoS2 found that the yield strength increased from an average of 821 MPa for pure MoS2 (0 at. % Cr) to 1017 MPa for 50 at. % Cr.[22] The increase in yield strength is accompanied by a change in the failure mode of the material. While the pure MoS2 nanopillar fails through a plastic bending mechanism, brittle fracture modes become apparent as the material is loaded with increasing amounts of dopant.[22]

The widely used method of micromechanical exfoliation has been careful studied in MoS2 to understand the mechanism of delamination in few-layer to multi-layer flakes. The exact mechanism of cleavage was found to be layer dependent. Flakes thinner than 5 layers undergo homogenous bending and rippling, while flakes around 10 layers thick delaminated through interlayer sliding. Flakes with more than 20 layers exhibited a kinking mechanism during micromechanical cleavage. The cleavage of these flakes was also determined to be reversible due to the nature of van der Waals bonding.[23]

In recent years, MoS2 has been utilized in flexible electronic applications, promoting more investigation into the elastic properties of this material. Nanoscopic bending tests using AFM cantilever tips were performed on micromechanically exfoliated MoS2 flakes that were deposited on a holey substrate.[16][24] The yield strength of monolayer flakes was 270 GPa,[24] while the thicker flakes were also stiffer, with a yield strength of 330 GPa.[16] Molecular dynamic simulations found the in-plane yield strength of MoS2 to be 229 GPa, which matches the experimental results within error.[25]

Bertolazzi and coworkers also characterized the failure modes of the suspended monolayer flakes. The strain at failure ranges from 6 to 11%. The average yield strength of monolayer MoS2 is 23 GPa, which is close to the theoretical fracture strength for defect-free MoS2.[24]

The band structure of MoS2 is sensitive to strain.[26][27][28]

Chemical reactions[edit]

Molybdenum disulfide is stable in air and attacked only by aggressive reagents. It reacts with oxygen upon heating forming molybdenum trioxide:

2 MoS
2
+ 7 O
2
→ 2 MoO
3
+ 4 SO
2

Chlorine attacks molybdenum disulfide at elevated temperatures to form molybdenum pentachloride:

2 MoS
2
+ 7 Cl
2
→ 2 MoCl
5
+ 2 S
2
Cl
2

Intercalation reactions[edit]

Molybdenum disulfide is a host for formation of intercalation compounds. This behavior is relevant to its use as a cathode material in batteries.[29][30] One example is a lithiated material, Li
x
MoS
2
.[31] With butyl lithium, the product is LiMoS
2
.[6]

Applications[edit]

Lubricant[edit]

A tube of commercial graphite powder lubricant with molybdenum disulfide additive (called "molybdenum")[32]

Due to weak van der Waals interactions between the sheets of sulfide atoms, MoS
2
has a low coefficient of friction. MoS
2
in particle sizes in the range of 1–100 µm is a common dry lubricant.[33] Few alternatives exist that confer high lubricity and stability at up to 350 °C in oxidizing environments. Sliding friction tests of MoS
2
using a pin on disc tester at low loads (0.1–2 N) give friction coefficient values of <0.1.[34][35]

MoS
2
is often a component of blends and composites that require low friction. For example, it is added to graphite to improve sticking.[32] A variety of oils and greases are used, because they retain their lubricity even in cases of almost complete oil loss, thus finding a use in critical applications such as aircraft engines. When added to plastics, MoS
2
forms a composite with improved strength as well as reduced friction. Polymers filled with MoS
2
include nylon (trade name Nylatron), Teflon and Vespel. Self-lubricating composite coatings for high-temperature applications consist of molybdenum disulfide and titanium nitride, using chemical vapor deposition.

Examples of applications of MoS
2
-based lubricants include two-stroke engines (such as motorcycle engines), bicycle coaster brakes, automotive CV and universal joints, ski waxes[36] and bullets.[37]

Other layered inorganic materials exhibit lubricating properties (collectively known as solid lubricants (or dry lubricants)) include graphite, which requires volatile additives and hexagonal boron nitride.[38]

Catalysis[edit]

Fingerprint releveled by molybdenum disulfide

MoS
2
is employed as a cocatalyst for desulfurization in petrochemistry, for example, hydrodesulfurization.The effectiveness of the MoS
2
catalysts is enhanced by doping with small amounts of cobalt or nickel The intimate mixture of these sulfides is supported on alumina. Such catalysts are generated in situ by treating molybdate/cobalt or nickel-impregnated alumina with H
2
S
or an equivalent reagent. Catalysis does not occur at the regular sheet-like regions of the crystallites, but instead at the edge of these planes.[39]

MoS2 finds use as a hydrogenation catalyst for organic synthesis.[40] It is derived from a common transition metal, rather than group 10 metal as are many alternatives, MoS2 is chosen when catalyst price or resistance to sulfur poisoning are of primary concern. MoS2 is effective for the hydrogenation of nitro compounds to amines and can be used produce secondary amines via reductive alkylation.[41] The catalyst can also can effect hydrogenolysis of organosulfur compounds, aldehydes, ketones, phenols and carboxylic acids to their respective alkanes.[40] The catalyst suffers from rather low activity however, often requiring hydrogen pressures above 95 atm and temperatures above 185 °C.

Research[edit]

Hydrogen evolution[edit]

MoS
2
and related molybdenum sulfides are efficient catalysts for hydrogen evolution, including the electrolysis of water.[42][43]

Microelectronics[edit]

As in graphene, the layered structures of MoS
2
and other transition metal dichalcogenides exhibit electronic and optical properties[44] that can differ from those in bulk.[45] Bulk MoS
2
has an indirect band gap of 1.2 eV,[46][47] while MoS
2
monolayers
have a direct 1.8 eV electronic bandgap,[48] supporting switchable transistors[49] and photodetectors.[50][45][51]

MoS
2
nanoflakes can be used for solution-processed fabrication of layered memristive and memcapacitive devices through engineering a MoO
x
/MoS
2
heterostructure sandwiched between silver electrodes.[52] MoS
2
-based memristors are mechanically flexible, optically transparent and can be produced at low cost.

The sensitivity of a graphene field-effect transistor (FET) biosensor is fundamentally restricted by the zero band gap of graphene, which results in increased leakage and reduced sensitivity. In digital electronics, transistors control current flow throughout an integrated circuit and allow for amplification and switching. In biosensing, the physical gate is removed and the binding between embedded receptor molecules and the charged target biomolecules to which they are exposed modulates the current.[53]

MoS2 has been investigated as a component of flexible circuits.[54][55]

In 2017 a 115-transistor, 1-bit microprocessor implementation using two-dimensional MoS
2
.[56]

Photonics and photovoltaics[edit]

MoS
2
also possesses mechanical strength, electrical conductivity, and can emit light, opening possible applications such as photodetectors.[57] MoS
2
has been investigated as a component of photoelectrochemical (e.g. for photocatalytic hydrogen production) applications and for microelectronics applications.[49]

See also[edit]

References[edit]

  1. ^ a b c Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.76. ISBN 1439855110. 
  2. ^ a b Kobayashi, K.; Yamauchi, J. (1995). "Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces". Physical Review B. 51 (23): 17085–17095. doi:10.1103/PhysRevB.51.17085. 
  3. ^ Yun, Won Seok; Han, S. W.; Hong, Soon Cheol; Kim, In Gee; Lee, J. D. (2012). "Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)". Physical Review B. 85 (3). doi:10.1103/PhysRevB.85.033305. 
  4. ^ Cannon, Peter (1959). "Melting Point and Sublimation of Molybdenum Disulphide". Nature. 183 (4675): 1612–1613. doi:10.1038/1831612a0. 
  5. ^ Schönfeld, B.; Huang, J. J.; Moss, S. C. (1983). "Anisotropic mean-square displacements (MSD) in single-crystals of 2H- and 3R-MoS2". Acta Crystallographica Section B. 39 (4): 404–407. doi:10.1107/S0108768183002645. 
  6. ^ a b Sebenik, Roger F. et al. (2005) "Molybdenum and Molybdenum Compounds", Ullmann's Encyclopedia of Chemical Technology. Wiley-VCH, Weinheim. doi: 10.1002/14356007.a16_655
  7. ^ "Jordesite on Mindat.org". 
  8. ^ Murphy, Donald W.; Interrante, Leonard V.; Kaner; Mansuktto (1995). "Metathetical Precursor Route to Molybdenum Disulfide". Inorganic Syntheses. Inorganic Syntheses. 30: 33–37. ISBN 9780470132616. doi:10.1002/9780470132616.ch8. 
  9. ^ Hong, J.; Hu, Z.; Probert, M.; Li, K.; Lv, D.; Yang, X.; Gu, L.; Mao, N.; Feng, Q.; Xie, L.; Zhang, J.; Wu, D.; Zhang, Z.; Jin, C.; Ji, W.; Zhang, X.; Yuan, J.; Zhang, Z. (2015). "Exploring atomic defects in molybdenum disulphide monolayers". Nature Communications. 6: 6293. Bibcode:2015NatCo...6E6293H. PMC 4346634Freely accessible. PMID 25695374. doi:10.1038/ncomms7293. 
  10. ^ Gmelin Handbook of Inorganic and Organometallic Chemistry - 8th edition (in German). 
  11. ^ Wypych, Fernando; Schöllhorn, Robert (1992-01-01). "1T-MoS2, a new metallic modification of molybdenum disulfide". Journal of the Chemical Society, Chemical Communications (19). ISSN 0022-4936. doi:10.1039/C39920001386. 
  12. ^ Enyashin, Andrey N.; Yadgarov, Lena; Houben, Lothar; Popov, Igor; Weidenbach, Marc; Tenne, Reshef; Bar-Sadan, Maya; Seifert, Gotthard (2011-12-22). "New Route for Stabilization of 1T-WS2 and MoS2 Phases". The Journal of Physical Chemistry C. 115 (50): 24586–24591. ISSN 1932-7447. doi:10.1021/jp2076325. 
  13. ^ Xu, Danyun; Zhu, Yuanzhi; Liu, Jiapeng; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin (2016). "Microwave-assisted 1T to 2H phase reversion of MoS 2 in solution: a fast route to processable dispersions of 2H-MoS 2 nanosheets and nanocomposites". Nanotechnology. 27 (38): 385604. ISSN 0957-4484. doi:10.1088/0957-4484/27/38/385604. 
  14. ^ Tenne, R.; Redlich, M. (2010). "Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes". Chemical Society Reviews. 39 (5): 1423–34. PMID 20419198. doi:10.1039/B901466G. 
  15. ^ Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. (2004-10-22). "Electric Field Effect in Atomically Thin Carbon Films". Science. 306 (5696): 666–669. ISSN 0036-8075. PMID 15499015. doi:10.1126/science.1102896. 
  16. ^ a b c Castellanos-Gomez, Andres; Poot, Menno; Steele, Gary A.; van der Zant, Herre S. J.; Agraït, Nicolás; Rubio-Bollinger, Gabino (2012-02-07). "Elastic Properties of Freely Suspended MoS2 Nanosheets". Advanced Materials. 24 (6): 772–775. ISSN 1521-4095. doi:10.1002/adma.201103965. 
  17. ^ Wan, Jiayu; Lacey, Steven D.; Dai, Jiaqi; Bao, Wenzhong; Fuhrer, Michael S.; Hu, Liangbing (2016-12-05). "Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications". Chemical Society Reviews. 45 (24). ISSN 1460-4744. doi:10.1039/C5CS00758E. 
  18. ^ Coleman, Jonathan N.; Lotya, Mustafa; O’Neill, Arlene; Bergin, Shane D.; King, Paul J.; Khan, Umar; Young, Karen; Gaucher, Alexandre; De, Sukanta (2011-02-04). "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials". Science. 331 (6017): 568–571. ISSN 0036-8075. PMID 21292974. doi:10.1126/science.1194975. 
  19. ^ Zhou, Kai-Ge; Mao, Nan-Nan; Wang, Hang-Xing; Peng, Yong; Zhang, Hao-Li (2011-11-11). "A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues". Angewandte Chemie. 123 (46): 11031–11034. ISSN 1521-3757. doi:10.1002/ange.201105364. 
  20. ^ a b Donnet, C.; Martin, J. M.; Le Mogne, Th.; Belin, M. (1996-02-01). "Super-low friction of MoS2 coatings in various environments". Tribology International. 29 (2): 123–128. doi:10.1016/0301-679X(95)00094-K. 
  21. ^ Oviedo, Juan Pablo; KC, Santosh; Lu, Ning; Wang, Jinguo; Cho, Kyeongjae; Wallace, Robert M.; Kim, Moon J. (2015-02-24). "In Situ TEM Characterization of Shear-Stress-Induced Interlayer Sliding in the Cross Section View of Molybdenum Disulfide". ACS Nano. 9 (2): 1543–1551. ISSN 1936-0851. doi:10.1021/nn506052d. 
  22. ^ a b Tedstone, Aleksander A.; Lewis, David J.; Hao, Rui; Mao, Shi-Min; Bellon, Pascal; Averback, Robert S.; Warrens, Christopher P.; West, Kevin R.; Howard, Philip (2015-09-23). "Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An in Situ TEM Study". ACS Applied Materials & Interfaces. 7 (37): 20829–20834. ISSN 1944-8244. doi:10.1021/acsami.5b06055. 
  23. ^ Tang, Dai-Ming; Kvashnin, Dmitry G.; Najmaei, Sina; Bando, Yoshio; Kimoto, Koji; Koskinen, Pekka; Ajayan, Pulickel M.; Yakobson, Boris I.; Sorokin, Pavel B. (2014-04-03). "Nanomechanical cleavage of molybdenum disulphide atomic layers". Nature Communications. 5: 3631. doi:10.1038/ncomms4631. 
  24. ^ a b c Bertolazzi, Simone; Brivio, Jacopo; Kis, Andras. "Stretching and Breaking of Ultrathin MoS2". ACS Nano. 5 (12): 9703–9709. doi:10.1021/nn203879f. 
  25. ^ Jiang, Jin-Wu; Park, Harold S.; Rabczuk, Timon (2013-08-12). "Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity". Journal of Applied Physics. 114 (6): 064307. ISSN 0021-8979. doi:10.1063/1.4818414. 
  26. ^ Li, H.; Wu, J.; Yin, Z.; Zhang, H. (2014). "Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets". Acc. Chem. Res. 47 (4): 1067–75. PMID 24697842. doi:10.1021/ar4002312. 
  27. ^ Amorim, B.; Cortijo, A.; De Juan, F.; Grushin, A.G.; Guinea, F.; Gutiérrez-Rubio, A.; Ochoa, H.; Parente, V.; Roldán, R.; San-Jose, P.; Schiefele, J.; Sturla, M.; Vozmediano, M.A.H. (2016). "Novel effects of strains in graphene and other two dimensional materials". Physics Reports. 1503: 747. doi:10.1016/j.physrep.2015.12.006. 
  28. ^ Zhang, X.; Lai, Z.; Tan, C.; Zhang, H. (2016). "Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications". Angew. Chem. Int. Ed. 55 (31): 8816–8838. doi:10.1002/anie.201509933. 
  29. ^ Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. (2014). "Lithium Ion Battery Applications of Molybdenum Disulfide (MoS2) Nanocomposites". Energy Environ. Sci. 7: 209–31. doi:10.1039/C3EE42591F. 
  30. ^ Benavente, E.; Santa Ana, M. A.; Mendizabal, F.; Gonzalez, G. (2002). "Intercalation chemistry of molybdenum disulfide". Coordination Chemistry Reviews. 224: 87–109. doi:10.1016/S0010-8545(01)00392-7. 
  31. ^ Müller-Warmuth, W. & Schöllhorn, R. (1994). Progress in intercalation research. Springer. ISBN 0-7923-2357-2. 
  32. ^ a b High Performance, Dry Powdered Graphite with sub-micron molybdenum disulfide. pinewoodpro.com
  33. ^ Claus, F. L. (1972), Solid Lubricants and Self-Lubricating Solids, New York: Academic Press 
  34. ^ Miessler, Gary L.; Tarr, Donald Arthur (2004). Inorganic Chemistry. Pearson Education. ISBN 978-0-13-035471-6. 
  35. ^ Shriver, Duward; Atkins, Peter; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. (17 February 2006). Inorganic Chemistry. W. H. Freeman. ISBN 978-0-7167-4878-6. 
  36. ^ "On dry lubricants in ski waxes" (PDF). Swix Sport AX. Retrieved 2011-01-06. 
  37. ^ "Barrels retain accuracy longer with Diamond Line". Norma. Retrieved 2009-06-06. 
  38. ^ Bartels, Thorsten; et al. (2002). "Lubricants and Lubrication". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley VCH. doi:10.1002/14356007.a15_423. 
  39. ^ Topsøe, H.; Clausen, B. S.; Massoth, F. E. (1996). Hydrotreating Catalysis, Science and Technology. Berlin: Springer-Verlag. 
  40. ^ a b Nishimura, Shigeo (2001). Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (1st ed.). New York: Wiley-Interscience. pp. 43–44 & 240–241. ISBN 9780471396987. 
  41. ^ Dovell, Frederick S.; Greenfield, Harold (1964). "Base-Metal Sulfides as Reductive Alkylation Catalysts". The Journal of Organic Chemistry. 29 (5): 1265–1267. doi:10.1021/jo01028a511. 
  42. ^ Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming (2014). "Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters". Nature Chemistry. 6 (3): 248–253. Bibcode:2014NatCh...6..248K. PMID 24557141. doi:10.1038/nchem.1853. 
  43. ^ Laursen, A. B.; Kegnaes, S.; Dahl, S.; Chorkendorff, I. (2012). "Molybdenum Sulfides – Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution". Energy Environ. Sci. 5 (2): 5577–91. doi:10.1039/c2ee02618j. 
  44. ^ Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. (2012). "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides". Nature Nanotechnology. 7 (11): 699–712. PMID 23132225. doi:10.1038/nnano.2012.193. 
  45. ^ a b Ganatra, R.; Zhang, Q. (2014). "Few-Layer MoS2: A Promising Layered Semiconductor". ACS Nano. 8 (5): 4074–99. PMID 24660756. doi:10.1021/nn405938z. 
  46. ^ Zhu, Wenjuan; Low, Tony; Lee, Yi-Hsien; Wang, Han; Farmer, Damon B.; Kong, Jing; Xia, Fengnian; Avouris, Phaedon (2014). "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition". Nature Communications. 5. doi:10.1038/ncomms4087. 
  47. ^ Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze (2015). "Exploring atomic defects in molybdenum disulphide monolayers". Nature Communications. 6: 6293. PMC 4346634Freely accessible. PMID 25695374. doi:10.1038/ncomms7293. 
  48. ^ Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, J.; F.; Wang, Feng (2010). "Emerging Photoluminescence in Monolayer MoS2". Nano Letters. 10 (4): 1271–1275. Bibcode:2010NanoL..10.1271S. PMID 20229981. doi:10.1021/nl903868w. 
  49. ^ a b Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. (2011). "Single-layer MoS2 transistors". Nature Nanotechnology. 6 (3): 147–150. Bibcode:2011NatNa...6..147R. PMID 21278752. doi:10.1038/nnano.2010.279. 
  50. ^ Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. (2013). "Ultrasensitive photodetectors based on monolayer MoS2". Nature Nanotechnology. 8 (7): 497–501. Bibcode:2013NatNa...8..497L. PMID 23748194. doi:10.1038/nnano.2013.100. 
  51. ^ Rao, C. N. R.; Ramakrishna Matte, H. S. S.; Maitra, U. (2013). "Graphene Analogues of Inorganic Layered Materials". Angew. Chem. (International ed.). 52 (50): 13162–85. doi:10.1002/anie.201301548. 
  52. ^ Bessonov, A. A.; Kirikova, M. N.; Petukhov, D. I.; Allen, M.; Ryhänen, T.; Bailey, M. J. A. (2014). "Layered memristive and memcapacitive switches for printable electronics". Nature Materials. 14 (2): 199–204. Bibcode:2015NatMa..14..199B. PMID 25384168. doi:10.1038/nmat4135. 
  53. ^ "Ultrasensitive biosensor from molybdenite semiconductor outshines graphene". R&D Magazine. 4 September 2014. 
  54. ^ Akinwande, Deji; Petrone, Nicholas; Hone, James (2014-12-17). "Two-dimensional flexible nanoelectronics". Nature Communications. 5: 5678. PMID 25517105. doi:10.1038/ncomms6678. 
  55. ^ Chang, Hsiao-Yu; Yogeesh, Maruthi Nagavalli; Ghosh, Rudresh; Rai, Amritesh; Sanne, Atresh; Yang, Shixuan; Lu, Nanshu; Banerjee, Sanjay Kumar; Akinwande, Deji (2015-12-01). "Large-Area Monolayer MoS2 for Flexible Low-Power RF Nanoelectronics in the GHz Regime". Advanced Materials. 28 (9): 1818–1823. doi:10.1002/adma.201504309. 
  56. ^ Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas (2017-04-11). "A microprocessor based on a two-dimensional semiconductor". Nature Communications. 8. ISSN 2041-1723. doi:10.1038/ncomms14948. 
  57. ^ Coxworth, Ben (September 25, 2014). "Metal-based graphene alternative "shines" with promise". Gizmag. Retrieved September 30, 2014.