Moran's I

From Wikipedia, the free encyclopedia
Jump to: navigation, search


The white and black squares are perfectly dispersed so Moran's I would be −1. If the white squares were stacked to one half of the board and the black squares to the other, Moran's I would be close to +1. A random arrangement of square colors would give Moran's I a value that is close to 0.

In statistics, Moran's I is a measure of spatial autocorrelation developed by Patrick Alfred Pierce Moran.[1][2] Spatial autocorrelation is characterized by a correlation in a signal among nearby locations in space. Spatial autocorrelation is more complex than one-dimensional autocorrelation because spatial correlation is multi-dimensional (i.e. 2 or 3 dimensions of space) and multi-directional.

Definition[edit]

Moran's I is defined as

where is the number of spatial units indexed by and ; is the variable of interest; is the mean of ; and is an element of a matrix of spatial weights.

The expected value of Moran's I under the null hypothesis of no spatial autocorrelation is

Its variance equals

where

[3] Values of I range from −1 to +1. Negative values indicate negative spatial autocorrelation and positive values indicate positive spatial autocorrelation. A zero value indicates a random spatial pattern. For statistical hypothesis testing, Moran's I values can be transformed to Z-scores.

Moran's I is inversely related to Geary's C, but it is not identical. Moran's I is a measure of global spatial autocorrelation, while Geary's C is more sensitive to local spatial autocorrelation.

Uses[edit]

Moran's I is widely used in the fields of geography and GIScience. Some examples include:

  • The analysis of geographic differences in health variables.[4]
  • It has been used to characterize the impact of lithium concentrations in public water on mental health.[5]
  • It has also recently been used in dialectology to measure the significance of regional language variation.[6]

Sources[edit]

  1. ^ Moran, P. A. P. (1950). "Notes on Continuous Stochastic Phenomena". Biometrika 37 (1): 17–23. doi:10.2307/2332142. JSTOR 2332142. 
  2. ^ Li, Hongfei; Calder, Catherine A.; Cressie, Noel (2007). "Beyond Moran's I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model". Geographical Analysis 39 (4): 357–375. doi:10.1111/j.1538-4632.2007.00708.x. 
  3. ^ Cliff and Ord (1981), Spatial Processes, London
  4. ^ "The Analysis of Spatial Association by Use of Distance Statistics". Geographical Analysis 24 (3): 189–206. 3 Sep 2010. doi:10.1111/j.1538-4632.1992.tb00261.x. 
  5. ^ "Geospatial examination of lithium in drinking water and suicide mortality". Int J Health Geogr. 11 (1): 19. 2012. doi:10.1186/1476-072X-11-19. PMID 22695110. 
  6. ^ Grieve, Jack (2011). "A regional analysis of contraction rate in written Standard American English". International Journal of Corpus Linguistics 16 (4): 514–546. doi:10.1075/ijcl.16.4.04gri. 

See also[edit]