From Wikipedia, the free encyclopedia
Jump to: navigation, search

Multiferroics are defined as materials that exhibit more than one of the primary ferroic order parameters

in the same phase.[1][2] While ferroelectric ferroelastics (with their associated piezoelectric and electrostrictive coupling) and ferromagnetic ferroelastics (with piezomagnetic and magnetomechanical coupling) are formally multiferroics, these days the term is usually used to describe the magnetoelectric multiferroics that are simultaneously ferromagnetic and ferroelectric.[2] Sometimes the definition is expanded to include non-primary order parameters, such as antiferromagnetism or ferrimagnetism. In addition other types of primary order, such as ferroic arrangements of magneotelectric multipoles[3] of which ferrotoroidicity[4] is an example, have also been recently proposed.


History of multiferroics: Number of papers per year on magnetoelectrics or the magnetoelectric effect (in blue), and on multiferroics (in red).

A Web of Science search for the term "multiferroic*" yields the year 2000 paper Why are there so few magnetic ferroelectrics?[5] from N. A. Spaldin (then Hill) as the earliest result. This work explained the origin of the contraindication between magnetism and ferroelectricity and proposed practical routes to circumvent it, and is widely credited with starting the modern explosion of interest in multiferroic materials. An article on how Spaldin arrived at the question is here[6]). The graph to the right shows in red the number of papers on multiferroics from a Web of Science search until 2008; the exponential increase continues today.

Magnetoelectric materials, in which an electric field induces a magnetisation that is linear in the applied field and vice versa, and the corresponding magnetoelectric effect have a longer history, shown in blue in the graph to the right. (Note that while magnetoelectric materials are not necessarily multiferroic, all ferromagnetic ferroelectric multiferroics are magneto electric.) The first known mention of magnetoelectricity is in the 1959 Edition of Landau & Lifshitz' Electrodynamics of Continuous Media which has the following comment at the end of the section on piezoelectricity: “Let us point out two more phenomena, which, in principle, could exist. One is piezomagnetism, which consists of linear coupling between a magnetic field in a solid and a deformation (analogous to piezoelectricity). The other is a linear coupling between magnetic and electric fields in a media, which would cause, for example, a magnetization proportional to an electric field. Both these phenomena could exist for certain classes of magnetocrystalline symmetry. We will not however discuss these phenomena in more detail because it seems that till present, presumably, they have not been observed in any substance.” One year later, I. E. Dzyaloshinskii showed using symmetry arguments that the material Cr2O3 should have linear magnetoelectric behavior,[7] and his prediction was rapidly verified by D. Astrov.[8] Over the next decades, research on magnetoelectric materials continued steadily in a number of groups in Europe, in particular in the former Soviet Union and in the group of H. Schmid at U. Geneva. A series of East-West conferences entitled Magnetoelectric Interaction Phenomena in Crystals (MEIPIC) was held between 1973 (in Seattle) and 2009 (in Santa Barbara), and indeed the term multiferroic was first used by H. Schmid in the proceedings of the 1993 MEIPIC conference (in Ascona).[1]

The availability of practical routes to creating multiferroic materials from 2000[5] stimulated intense activity. Particularly key early works were the discovery of large ferroelectric polarization in epitaxially grown thin films of magnetic BiFeO3,[9] the observation that the non-collinear magnetic ordering in orthorhombic TbMnO3[10] and TbMn2O5[11] causes ferroelectricity, and the identification of unusual improper ferroelectricity that is compatible with the coexistence of magnetism in hexagonal manganite YMnO3.[12]


The ferroic properties are closely linked to symmetry and can be characterized by their behavior under space inversion and time reversal (see table). The operation of space inversion reverses the direction of polarization P while leaving the magnetization M invariant. As a result ferromagnets and ferroelastics are invariant under space inversion whereas ferroelectrics are not. The operation of time reversal, on the other hand, changes the sign of M, while the sign of P remains invariant. Therefore ferroelastics and ferroelectrics are invariant under time reversal whereas ferromagnets are not.

Space invariant Space variant
Time invariant Ferroelastic Ferroelectric
Time variant Ferromagnetic Magnetoelectric Multiferroic

Magnetoelectric multiferroics violate both space-inversion and time-reversal symmetries since they are both ferromagnetic and ferroelectric.


Many multiferroics are transition metal oxides with perovskite crystal structure. They can be generally subdivided into two classes as introduced by D. Khomskii: Type-I and type-II multiferroics.[13]

Type-I multiferroics which have been known for a long time are often good ferroelectrics and antiferromagnetic. They exhibit high ferroelectric and lower magnetic ordering temperatures. Examples are BiFeO3 (TC = 1100 K, TN = 643 K) and YMnO3 (TC = 914 K, TN = 76 K) and probably BiMnO3 and PbVO3. Since ferroelectricity and magnetism develop independently from another, the magnetoelectric coupling between the two is usually weak. In a first approach, they might be regarded as ferroelectrics which happen to be (antiferro)magnetic. However, more recently there have been reports of large magnetoelectric coupling at room-temperature in type-I multiferroics such as in the "diluted" magnetic perovskite (PbZr0.53Ti0.47O3)0.6–(PbFe1/2Ta1/2O3)0.4 (PZTFT) in certain Aurivillius phases, and in the system (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 (BFC-BKT). Here, strong ME coupling has been observed on a microscopic scale using PFM under magnetic field among other techniques.[14][15][16] The latter system, appears to be the first reported core-shell type relaxor ferroelectric multiferroic, where the magnetic structure in so-called "multiferroic clusters" is proposed to be due Fe-Co ferrimagnetism, which can be switched by an electric field.

Type-II multiferroics include rare-earth manganites such as TbMnO3, HoMn2O5. Here, magnetism causes ferroelectricity and ordering temperatures are usually identical, which are, however, at very low temperatures (e.g. 28 K in case of TbMnO3). Moreover, they exhibit low net magnetization due to antiferromagnetic spin-spiral structures and low polarization of the order of 10−2 μC/cm2.[13]

Other, non-perovskite multiferroic oxides include LuFe2O4 and LiCu2O2,[17] and non-oxides such as BaNiF4 and spinel chalcogenides, e.g. ZnCr2Se4. These compounds show rich phase diagrams combining different ferroic orders in separate phases.

Apart from single phase multiferroics, composites and heterostructures exhibiting more than one ferroic order parameter are studied extensively. Some examples include magnetic thin films on piezoelectric PMN-PT substrates and Metglass/PVDF/Metglass trilayer structures.[citation needed]

Besides scientific interest in their physical properties, multiferroics have potential for applications as actuators, switches, magnetic field sensors or new types of electronic memory devices.[citation needed]

Mechanisms for ferroelectricity in multiferroics[edit]

A necessary but not sufficient condition for the appearance of spontaneous electric polarization is the absence of inversion symmetry. We can distinguish between proper and improper ferroelectric (FE). The difference lies in the driving force (the primary order parameter) that leads to ferroelectricity: In the case of proper FE, the primary order parameter is the ferroelectric distortion. One example of proper FE is BaTiO3 where a covalent bonding between the transition metal and the oxygen happens to allow a polar state. In usual perovskite-based ferroelectrics like BaTiO3, the ferroelectric distortion occurs due to the displacement of B-site cation (Ti) with respect to the oxygen octahedral cage. Here the transition metal ion (Ti in BaTiO3 ) requires an empty “d” shell since the ferroelectric displacement occurs due to the hopping of electrons between Ti “d” and O “p” atoms.

For technological applications, it is highly desirable to combine ferroelectric and ferromagnetic order within one material, but it has become clear that usual displacive ferroelectric order, e.g. like in BaTiO3, cannot coexist together with magnetic order. Whereas the latter requires at least partially filled d-shells (e.g.-orbitals) providing a non-zero magnetic moment, usual displacive ferroelectricity requires empty d-shells.[5] Therefore, new ferroelectric driving mechanisms must be present for electric and magnetic ferroic order to occur simultaneously. A variety of driving mechanism is described below.

Lone pair multiferroics[edit]

In usual perovskite-based ferroelectrics like BaTiO3, the ferroelectric distortion occurs due to the displacement of B-site cation (Ti) with respect to the oxygen octahedral cage. Here the transition metal ion (Ti in BaTiO3 ) requires an empty "d" shell since the ferroelectric displacement occurs due to the hopping of electrons between Ti "d" and O p atoms. This normally excludes any net magnetic moment because magnetism requires partially filled "d" shells. However, partially filled "d" shell on the B-site reduces the tendency of perovskites to display ferroelectricity.

In order for the coexistence of magnetism and ferroelectricity (multiferroic), one possible mechanism is lone-pair driven[5] where the A-site drives the displacement and partially filled “d” shell on the B-site contributes to the magnetism. Examples include BiFeO3,[18][19] BiMnO3,[20] PbVO3. In the above materials, the A-site cation (Bi3+, Pb2+) has a stereochemically active 6s2 lone-pair which causes the Bi 6p (empty) orbital to come closer in energy to the O 2p orbitals. This leads to hybridization between the Bi 6p and O 2p orbitals and drives the off-centering of the cation towards the neighboring anion resulting in ferroelectricity. In BiFeO3, for example, off-centering of ions gives rise to an electric polarization, while at a lower temperature additional magnetic ordering breaks time-reversal symmetry.

Improper geometric ferroelectricity[edit]

In improper geometric ferroelectrics a structural phase transition at high temperatures causes the appearance of ferroelectricity. A prototypical compound is the family of hexagonal rare earth manganites (h-RMnO3 with R=Ho-Lu, Y), showing a structural phase transition at around 1300 K providing the necessary symmetry lowering by tilting of the MnO5 bipyramids. This allows for an electrostatically driven corrugation of the R-ion layers. The value of the induced polarization of several µC/cm² is comparable to that of usual displacive ferroelectrics. The multiferroic phase is entered only at cryogenic temperatures when antiferromagnetic order due to spin frustration arises.[21][22] Thus only weak, indirect coupling between two disparate order parameters can occur. The exact microscopic mechanism of the ferroelectric ordering in hexagonal RMnO3 is still questionable in the scientific community, i.e. it is still matter of debate whether only the corrugation of R-ions is the origin of the electric polarization or whether an off-centering of Mn ions also contributes to the polarization.

Charge ordering[edit]

A possible origin for a multiferroic state is charge ordering. Such an order can occur in a compound containing ions of mixed valence and with geometrical or magnetic frustration. These ions form a polar arrangement, causing improper ferroelectricity (i.e. no ionic displacement). If magnetic ions are present, a coexisting magnetic order can be established and may be coupled to ferroelectricity

One prominent example for a charge ordered multiferroic is LuFe2O4, which shows improper ferroelectricity below 330 K.[23] The arrangements of the electrons arise from the charge frustration on a triangular lattice with the mixed valence state of Fe2+ and Fe3+ ions. Ferrimagnetic behavior occurs below 240 K.

In addition, charge ordered ferroelectricity is suggested in Fe3O4 and (Pr,Ca)MnO3.[24]

Magnetically driven ferroelectricity[edit]

Magnetically driven multiferroics[25] are insulating materials, mostly oxides, in which macroscopic electric polarization is induced by magnetic long-range order. A necessary but not sufficient condition for the appearance of spontaneous electric polarization is the absence of inversion symmetry. We can distinguish between proper and improper ferroelectricity (FE). The difference lies in the driving force (the primary order parameter) that lead to ferroelectricity: In the case of proper FE, the primary order parameter is the ferroelectric distortion. One example of proper FE is BaTiO3 where a covalent bonding between the transition metal and the oxygen happens to allow a polar state.

In the case of improper FE, the primary order parameter is not the ferroelectric distortion but another type of phase change, like magnetic ordering or a structural change. The FE distortion is a secondary order parameter in the sense that it is driven by the presence of other order parameters. One example of improper FE is when the inversion symmetry of a crystal is broken by magnetic structure like spiral magnetic ordering. This is the spin-driven ferroelectric. The microscopic mechanism of magnetoelectric (ME) coupling in spiral multiferroics involves spin-orbit coupling. The polarization is smaller than the one of proper FE. ME coupling is very strong because ferroelectricity is driven by magnetic order and do not exist without the latter. That means that any change in the magnetic order will affect the ferroelectricity.

Optical properties[edit]

Optical properties of multiferroics.

List of materials[edit]

critical temperature
Crystal TC [K] Type
PbVO3 lone pair
BiMnO3 lone pair
BiFeO3 1143 lone pair
LuFe2O4 charge order
HoMn2O5 39[26]
h-YMnO3 1270 geometric
K2SeO4 geometric
Cs2CdI4 geometric
TbMnO3 27 spin spiral
Ni3V2O8 6.5[27]
MnWO4 13.5[28] spin spiral
CuO 230 spin spiral


Schematic picture of the four possible domain states of a ferroelectric ferromagnetic material. Both, the polarization (electric dipole indicated by charges) and the magnetization (red arrow), may have two orientations. The domains are separated by different types of domain walls, classified by the order parameter that is changed throughout the wall.

Like any ferroic material, a multiferroic system is fragmented into domains. A domain is a spatially extended region with a constant direction and phase of its order parameters. Neighbouring domains are separated by transition regions called domain walls.

Properties of multiferroic domains[edit]

In contrast to materials with a single ferroic order, domains in multiferroics have additional properties and functionalities. For instance, they are characterized by an assembly of at least two order parameters.[29] The order parameters may be independent (typical yet not mandatory for a split-order-parameter multiferroic) or coupled (mandatory for a joint-order-parameter multiferroic).

Many outstanding properties that distinguish domains in multiferroics from those in materials with a single ferroic order are consequences of the coupling between the order parameters.

  • The coupling can lead to patterns with a distribution and/or topology of domains that is exclusive to multiferroics.
  • The order-parameter coupling is usually homogeneous across a domain, i.e., gradient effects are negligible.
  • In some cases the averaged net value of the order parameter for a domain pattern is more relevant for the coupling than the value of the order parameter of an individual domain.[30]

These issues lead to novel functionalities which explain the current interest in these materials.

Properties of multiferroic domain walls[edit]

Domain walls are spatially extended regions of transition mediating the transfer of the order parameter from one domain to another. In comparison to the domains the domain walls are not homogeneous and they can have a lower symmetry. This may modify the properties of a multiferroic and the coupling of its order parameters. Multiferroic domain walls may display particular static[31] and dynamic[32] properties.

Static properties refer to stationary walls. They can result from

  • The reduced dimensionality
  • The finite width of the wall
  • The different symmetry of the wall
  • The inherent chemical, electronic, or order-parameter inhomogeneity within the walls and the resulting gradient effects.[33]

Dynamic properties refer to moving walls. In a magnetic ferroelectric, the magnetoelectric interaction is, at its roots, usually synonymous to the movement of the multiferroic domain walls. Because of the order-parameter coupling this may reflect characteristic features of both, ferroelectric and magnetic domain wall movement.

Magnetoelectric effect[edit]

The magnetoelectric (ME) effect is the phenomenon of inducing magnetic (electric) polarization by applying an external electric (magnetic) field. The effects can be linear or/and non-linear with respect to the external fields. In general, this effect depends on temperature. The effect can be expressed in the following form

where P is the electric polarization, M the magnetization, E and H the electric and magnetic field, and α and β are the linear and nonlinear ME susceptibilities. The effect can be observed in single phase and composite materials. Some examples of single phase magnetoelectrics are Cr2O3,[34] and multiferroic materials which show a coupling between the magnetic and electric order parameters. Composite magnetoelectrics are combinations of magnetostrictive and electrostrictive materials, such as ferromagnetic and piezoelectric materials. The size of the effect depends on the microscopic mechanism. In single phase magnetoelectrics the effect can be due to the coupling of magnetic and electric orders as observed in some multiferroics. In composite materials the effect originates from interface coupling effects, such as strain. Some of the promising applications of the ME effect are sensitive detection of magnetic fields, advanced logic devices and tunable microwave filters.[34]

The SI-Unit of α is [s/m] which can be converted to the practical unit [V/(cm Oe)] by [s/m]=1.1 x10−11 εr [V/(cm Oe)]. For the CGS unit, [unitless] = 3 x 108 [s/m]/(4 x π)

Strain driven magnetoelectric heterostructured effect[edit]

Thin film strategy also enables achievement of interfacial multiferroic coupling through a mechanical channel in heterostructures consisting of a magnetoelastic and a piezoelectric component.[35] This type of heterostructure is composed of an epitaxial magnetoelastic thin film grown on a piezoelectric substrate. For this system, application of a magnetic field will induce a change in the dimension of the magnetoelastic film. This process, called magnetostriction, will alter residual strain conditions in the magnetoelastic film, which can be transferred through the interface to the piezoelectric substrate. Consequently, a polarization is introduced in the substrate through the piezoelectric process. The overall effect is that the polarization of the ferroelectric substrate is manipulated by an application of a magnetic field, which is the desired magnetoelectric effect. In this case, the interface plays an important role in mediating the responses from one component to another, realizing the magnetoelectric coupling.[36] For an efficient coupling, a high-quality interface with optimal strain state is desired. In light of this interest, advanced deposition techniques have been applied to synthesize these types of thin film heterostructures. Molecular beam epitaxy has been demonstrated to be capable of depositing structures consisting of piezoelectric and magnetostrictive components. Materials systems studied included cobalt ferrite, magnetite, SrTiO3, BaTiO3, PMNT.[37][38][39]

Flexomagnetoelectric effect[edit]

Magnetically driven ferroelectricity is also caused by inhomogeneous[40] magnetoelectric interaction. This effect appears due to the coupling between inhomogeneous order parameters. It was also called as flexomagnetoelectric effect.[41] Usually it is describing using the Lifshitz invariant (i.e. single-constant coupling term).[42] It was shown that in general case of cubic hexoctahedral crystal the four phenomenological constants approach is correct.[43] The flexomagnetoelectric effect appears in spiral multiferroics[44] or micromagnetic structures like domain walls[45] and magnetic vortexes.[46][47] Ferroelectricity developed from micromagnetic structure can appear in any magnetic material even in centrosymmetric one.[48] Building of symmetry classification of domain walls leads to determination of the type of electric polarization rotation in volume of any magnetic domain wall. Existing symmetry classification[49] of magnetic domain walls was applied for predictions of electric polarization spatial distribution in their volumes.[50][51] The predictions for almost all symmetry groups conform with phenomenological theory in which inhomogeneous magnetization couples with homogeneous polarization. The total synergy between symmetry and phenomenological theory appears if energy terms with electrical polarization spatial derivatives are taking into account.[52]


Multiferroics properties can appear in a large variety of materials. Therefore, several routes for conventional material fabrication are being applied. Popular techniques within the multiferroic community are: solid state synthesis.,[53] hydrothermal synthesis, sol-gel processing, vacuum based deposition, and floating zone.

However some types of multiferroics require specific processing conditions within certain techniques. For instance:

  • Vacuum based deposition (for instance: MBE, PLD) for thin film deposition to exploit certain advantages that may come with 2-dimensional layered structures such as: strain mediated multiferroics, heterostructures, anisotropy.
  • High pressure solid state synthesis to stabilize metastable or highly distorted structures as for example lone pair multiferroics like Bi based multiferroics due to their low melting point.


The study of dynamics in multiferroic systems is concerned with understanding the time evolution of the coupling between various ferroic orders, in particular under external applied fields. Current research in this field is motivated both by the promise of new types of application reliant on the coupled nature of the dynamics, and the search for new physics lying at the heart of the fundamental understanding of the elementary MF excitations.

An increasing number of studies of MF dynamics are concerned with the coupling between electric and magnetic order parameters in the so-called magnetoelectric (ME) multiferroics. In this class of materials, the leading research is exploring, both theoretically and experimentally, the fundamental limits (e.g. intrinsic coupling velocity, coupling strength, materials synthesis) of the dynamical ME coupling and how these may be both reached and exploited for the development of new technologies.

At the heart of the proposed technologies based on ME coupling are switching processes, which describe the manipulation of the material's macroscopic magnetic properties with electric field and vice versa. Much of the physics of these processes is described by the dynamics of domains and domain walls. An important goal for current research is the minimization of the switching time, from fractions of a second ('quasi'-static regime), towards the nanosecond range and faster, the latter being the typical time scale needed for modern electronics, such as next generation memory devices.

Ultrafast processes operating at picosecond, femtosecond, and even attosecond scale are both driven by, and studied using, optical methods that are at the front line of modern science. The physics underpinning the observations at these short time scales is governed by non-equilibrium dynamics, and usually makes use of resonant processes. One demonstration of ultrafast processes is the switching from collinear antiferromagnetic state to spiral antiferromagnetic state in CuO under excitation by 40 fs 800 nm laser pulse.[54] A second example shows the possibility for the direct control of spin waves with THz radiation on antiferromagnetic NiO.[55] These are promising demonstrations of how the switching of electric and magnetic properties in multiferroics, mediated by the mixed character of the magnetoelectric dynamics, may lead to ultrafast data processing, communication and quantum computing devices.

Current research into MF dynamics aims to address various open questions; the practical realisation and demonstration of ultra-high speed domain switching, the development of further new applications based on tunable dynamics, e.g. frequency dependence of dielectric properties, the fundamental understanding of the mixed character of the excitations (e.g. in the ME case, mixed phonon-magnon modes – 'electromagnons'), and the potential discovery of new physics associated with the MF coupling.


Multiferroic composite structures in bulk form are explored for high-sensitivity ac magnetic field sensors and electrically tunable microwave devices such as filters, oscillators and phase shifters (in which the ferri-, ferro- or antiferro-magnetic resonance is tuned electrically instead of magnetically).[34]

In multiferroic thin films, the coupled magnetic and ferroelectric order parameters can be exploited for developing magnetoelectronic devices. These include novel spintronic devices such as tunnel magnetoresistance (TMR) sensors and spin valves with electric field tunable functions. A typical TMR device consists of two layers of ferromagnetic materials separated by a thin tunnel barrier (~2 nm) made of a multiferroic thin film.[56] In such a device, spin transport across the barrier can be electrically tuned. In another configuration, a multiferroic layer can be used as the exchange bias pinning layer. If the antiferromagnetic spin orientations in the multiferroic pinning layer can be electrically tuned, then magnetoresistance of the device can be controlled by the applied electric field.[57] One can also explore multiple state memory elements, where data are stored both in the electric and the magnetic polarizations.

1960s Ascher paper [58]

See also[edit]

Reviews on Multiferroics[edit]


  1. ^ a b Schmid, Hans (1994). "Multi-ferroic magnetoelectrics". Ferroelectrics. 162: 317–338. doi:10.1080/00150199408245120. 
  2. ^ a b Spaldin, Nicola A.; Fiebig, Manfred (2005). "The renaissance of magnetoelectric multiferroics". Science. 309: 391. PMID 16020720. doi:10.1126/science.1113357. 
  3. ^ Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim (2008). "The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect". Journal of Physics: Condensed Matter. 20: 434203. doi:10.1088/0953-8984/20/43/434203. 
  4. ^ Ederer, Claude; Spaldin, Nicola A. (2007-12-07). "Towards a microscopic theory of toroidal moments in bulk periodic crystals". Physical Review B. 76 (21): 214404. doi:10.1103/PhysRevB.76.214404. 
  5. ^ a b c d Hill, Nicola A. (2000). "Why Are There so Few Magnetic Ferroelectrics?". J. Phys. Chem. B. 104 (29): 6694–6709. doi:10.1021/jp000114x. 
  6. ^ Spaldin, Nicola (2015-07-03). "Find your most interesting question". Science. 349 (6243): 110–110. ISSN 0036-8075. PMID 26138981. doi:10.1126/science.349.6243.110. 
  7. ^ Dzyaloshinskii, I. E. (1960). "On the magneto-electrical effect in antiferromagnets" (PDF). Sov. Phys. JETP. 10: 628. 
  8. ^ Astrov, D. N. (1960). "The magnetoelectric effect in antiferromagnets". Sov. Phys. JETP. 11: 708. 
  9. ^ Wang, J.; et al. (Mar 2003). "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures". Science. 299 (5613): 1719–1722. Bibcode:2003Sci...299.1719W. PMID 12637741. doi:10.1126/science.1080615. 
  10. ^ Kimura, T.; et al. "Magnetic control of ferroelectric polarization". Nature. 426: 55–58. Bibcode:2003Natur.426...55K. doi:10.1038/nature02018. 
  11. ^ Hur, N.; et al. (2004). "Electric polarization reversal and memory in a multiferroic material induced by magnetic fields". Nature. 429: 392–395. Bibcode:2004Natur.429..392H. PMID 15164057. doi:10.1038/nature02572. 
  12. ^ Van Aken, Bas B.; Palstra, Thomas T. M.; Filippetti, Alessio; Spaldin, Nicola A. (2004-03-01). "The origin of ferroelectricity in magnetoelectric YMnO3". Nature Materials. 3 (3): 164–170. ISSN 1476-1122. doi:10.1038/nmat1080. 
  13. ^ a b Khomskii, Daniel (2009-03-09). "Trend: Classifying multiferroics: Mechanisms and effects". Physics. 2. doi:10.1103/physics.2.20. 
  14. ^ Keeney, Lynette; Maity, Tuhin; Schmidt, Michael; Amann, Andreas; Deepak, Nitin; Petkov, Nikolay; Roy, Saibal; Pemble, Martyn E.; Whatmore, Roger W. (2013-08-01). "Magnetic Field-Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature". Journal of the American Ceramic Society. 96 (8): 2339–2357. ISSN 1551-2916. doi:10.1111/jace.12467. 
  15. ^ Evans, D.M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F. (2013-02-26). "Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT". Nature Communications. 4: 1534. PMC 3586726Freely accessible. PMID 23443562. doi:10.1038/ncomms2548. 
  16. ^ Henrichs, Leonard F.; Cespedes, Oscar; Bennett, James; Landers, Joachim; Salamon, Soma; Heuser, Christian; Hansen, Thomas; Helbig, Tim; Gutfleisch, Oliver (2016-04-01). "Multiferroic Clusters: A New Perspective for Relaxor-Type Room-Temperature Multiferroics". Advanced Functional Materials. 26 (13): 2111–2121. ISSN 1616-3028. doi:10.1002/adfm.201503335. 
  17. ^ Yasui, Yukio; et al. (2009). "Studies of Multiferroic System LiCu 2 O 2 : I. Sample Characterization and Relationship between Magnetic Properties and Multiferroic Nature". J. Phys. Soc. Jpn. 78: 084720. Bibcode:2009JPSJ...78h4720Y. arXiv:0904.4014Freely accessible. doi:10.1143/JPSJ.78.084720. 
  18. ^ Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M. (2005). "First-principles study of spontaneous polarization in multiferroic Bi Fe O 3". Phys. Rev. B. 71: 014113. Bibcode:2005PhRvB..71a4113N. arXiv:cond-mat/0407679Freely accessible. doi:10.1103/physrevb.71.014113. 
  19. ^ Kumar, A.; Varshney, D. (2012). "Crystal structure refinement of Bi1−xNdxFeO3 multiferroic by the Rietveld method". Ceram. Inter. 38: 3935–3942. doi:10.1016/j.ceramint.2012.01.046. 
  20. ^ Seshadri, R.; Hill, N. A. (2001). "Visualizing the Role of Bi 6s "Lone Pairs" in the Off-Center Distortion in Ferromagnetic BiMnO 3". Chem. Mater. 13: 2892–2899. doi:10.1021/cm010090m. 
  21. ^ Yen, F.; De la Cruz, C.; Lorenz, B.; Galstyan, E.; Sun, Y. Y.; Gospodinov, M.; Chu, C. W. (2007). "Magnetic phase diagrams of multiferroic hexagonal RMnO3 (R = Er, Yb, Tm, and Ho)". J. Mater. Res. 22 (8): 2163–2173. Bibcode:2007JMatR..22.2163Y. arXiv:0705.3825Freely accessible. doi:10.1557/JMR.2007.0271. 
  22. ^ Yen, F.; De la Cruz, C. R.; Lorenz, B.; Sun, Y. Y.; Wang, Y. Q.; Gospodinov, M. M.; Chu, C. W. (2005). "Low-temperature dielectric anomalies in HoMnO3: The complex phase diagram". Phys. Rev. B. 71 (18): 180407(R). Bibcode:2005PhRvB..71r0407Y. arXiv:cond-mat/0503115Freely accessible. doi:10.1103/PhysRevB.71.180407. 
  23. ^ Ikeda, N.; et al. (2005). "Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4". Nature. 436: 1136–1138. Bibcode:2005Natur.436.1136I. doi:10.1038/nature04039. 
  24. ^ Cheong, S. W.; Mostovoy, M. (2007). "Multiferroics: a magnetic twist for ferroelectricity". Nature Materials. 6: 13–20. Bibcode:2007NatMa...6...13C. doi:10.1038/nmat1804. 
  25. ^ Cheong, Sang-Wook; Mostovoy, Maxim. "Multiferroics: a magnetic twist for ferroelectricity". Nature Materials. 6 (1): 13–20. Bibcode:2007NatMa...6...13C. doi:10.1038/nmat1804. 
  26. ^ Mihailova, B.; Gospodinov, M. M.; Guttler, G.; Yen, F.; Litvinchuk, A. P.; Iliev, M. N. (2005). "Temperature-dependent Raman spectra of HoMn2O5 and TbMn2O5". Phys. Rev. B. 71: 172301. Bibcode:2005PhRvB..71q2301M. doi:10.1103/PhysRevB.71.172301. 
  27. ^ Chaudhury, R. P.; Yen, F.; Dela Cruz, C. R.; Lorenz, B.; Wang, Y. Q.; Sun, Y. Y.; Chu, C. W. (2007). "Pressure-temperature phase diagram of multiferroic Ni3V2O8". Phys. Rev. B. 75: 012407. Bibcode:2007PhRvB..75a2407C. arXiv:cond-mat/0701576Freely accessible. doi:10.1103/PhysRevB.75.012407. 
  28. ^ "Effect of magnetic field and temperature on the ferroelectric loop in MnWO4". Physical Review B. 77. Bibcode:2008PhRvB..77q2402K. arXiv:0806.0117Freely accessible. doi:10.1103/PhysRevB.77.172402. 
  29. ^ D. B. Litvin, Acta Crystallogr., A64, 316 (2008)
  30. ^ Heron, J. T.; et al. (2011). "Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure". Phys. Rev. Lett. 107: 217202. Bibcode:2011PhRvL.107u7202H. PMID 22181917. doi:10.1103/physrevlett.107.217202. 
  31. ^ Seidel, J.; et al. (2009). "Conduction at domain walls in oxide multiferroics". Nature Materials. 8: 229–234. Bibcode:2009NatMa...8..229S. PMID 19169247. doi:10.1038/nmat2373. 
  32. ^ Hoffmann, T.; et al. (2011). "Time-resolved imaging of magnetoelectric switching in multiferroic MnWO 4". Phys. Rev. B. 84: 184404. Bibcode:2011PhRvB..84r4404H. arXiv:1103.2066Freely accessible. doi:10.1103/physrevb.84.184404. 
  33. ^ Salje, E. K. H. (2010). "Multiferroic Domain Boundaries as Active Memory Devices: Trajectories Towards Domain Boundary Engineering". Chem. Phys. Chem. 11: 940–950. doi:10.1002/cphc.200900943. 
  34. ^ a b c Nan, C. W.; et al. (2008). "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions". J. App. Phys. 103: 031101. Bibcode:2008JAP...103c1101N. doi:10.1063/1.2836410. 
  35. ^ Srinivasan, G.; et al. (2002). "Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides". Physical Review B. 65. Bibcode:2002PhRvB..65m4402S. doi:10.1103/physrevb.65.134402. 
  36. ^ Scott, J. F. (2007). "Data storage: Multiferroic memories". Nature Materials. 6: 256–257. Bibcode:2007NatMa...6..256S. doi:10.1038/nmat1868. 
  37. ^ Xie, S.; Cheng, J.; et al. (2008). "Interfacial structure and chemistry of epitaxial CoFe2O4 thin films on SrTiO3 and MgO substrates". App. Phys Lett. 93: 181901–181903. Bibcode:2008ApPhL..93r1901X. doi:10.1063/1.3006060. 
  38. ^ Bibes, M.; Barthélémy, A. (2008). "Multiferroics: Towards a magnetoelectric memory". Nature Materials. 7: 425–426. Bibcode:2008NatMa...7..425B. doi:10.1038/nmat2189. 
  39. ^ Yang, J. J.; Zhao, Y.G.; et al. (2009). "Electric field manipulation of magnetization at room temperature in multiferroic CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures". Applied Physics Letters. 94: 212504. Bibcode:2009ApPhL..94u2504Y. doi:10.1063/1.3143622. 
  40. ^ Bar'yakhtar, V.G.; L'vov, V.A.; Yablonskiy, D.A. (1983). "Spin reversal in 180 domain walls of the spin-flop phase of ease-axis antiferromagnets". JETP Lett. 37 (12): 673–675. Bibcode:1983JETPL..37..673B. 
  41. ^ Pyatakov, A.P.; Zvezdin, A.K. (2009). "Flexomagnetoelectric interaction in multiferroics". Eur. Phys. J. B. 71: 419–427. Bibcode:2009EPJB...71..419P. doi:10.1140/epjb/e2009-00281-5. 
  42. ^ Mostovoy, M. (2006). "Ferroelectricity in Spiral Magnets". Phys. Rev. Lett. 96: 067601. Bibcode:2006PhRvL..96f7601M. arXiv:cond-mat/0510692Freely accessible. doi:10.1103/physrevlett.96.067601. 
  43. ^ Tanygin, B.M. (2011). "On the free energy of the flexomagnetoelectric interactions". Journal of Magnetism and Magnetic Materials. 323 (14): 1899–1902. Bibcode:2011JMMM..323.1899T. arXiv:1105.5300Freely accessible. doi:10.1016/j.jmmm.2011.02.035. 
  44. ^ Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. (2003). "Magnetic control of ferroelectric polarization". Nature. 426: 55–58. Bibcode:2003Natur.426...55K. doi:10.1038/nature02018. 
  45. ^ Logginov, A.S.; Meshkov, G.A.; Nikolaev, A.V.; Nikolaeva, E.P.; Pyatakov, A.P.; Zvezdin, A.K. (2008). "Room temperature magnetoelectric control of micromagnetic structure in iron garnet films". Applied Physics Letters. 93: 182510. Bibcode:2008ApPhL..93r2510L. doi:10.1063/1.3013569. 
  46. ^ Pyatakov, A. P.; Meshkov, G. A. "Electrically stabilized magnetic vortex and antivortex states in magnetic dielectrics". Bibcode:2010arXiv1001.0391P. arXiv:1001.0391Freely accessible. 
  47. ^ Pyatakov, A. P.; Meshkov, G. A.; Zvezdin, A.K. (2012). "Electric polarization of magnetic textures: New horizons of micromagnetism". JMMM. 324: 3551–3554. Bibcode:2012JMMM..324.3551P. arXiv:1211.2403Freely accessible. doi:10.1016/j.jmmm.2012.02.087. 
  48. ^ Dzyaloshinskii, I. (2008). "Magnetoelectricity in ferromagnets". EPL. 83: 67001. Bibcode:2008EL.....8367001D. doi:10.1209/0295-5075/83/67001. 
  49. ^ Baryakhtar, V.; L'vov, V.; Yablonsky, D. (1984). "Magnetic symmetry of the domain walls in magnetically ordered crystals". Sov. Phys. JETP. 60 (5): 1072–1080. 
  50. ^ V.G. Bar'yakhtar, V.A. L'vov, D.A. Yablonskiy, Theory of electric polarization of domain boundaries in magnetically ordered crystals, in: A. M. Prokhorov, A. S. Prokhorov (Eds.), Problems in solid-state physics, Chapter 2, Mir Publishers, Moscow, 1984, pp. 56-80
  51. ^ Tanygin, B.M. (2011). "Symmetry theory of the flexomagnetoelectric effect in the magnetic domain walls". JMMM. 323 (5): 616–619. Bibcode:2011JMMM..323..616T. arXiv:1007.3524Freely accessible. doi:10.1016/j.jmmm.2010.10.028. 
  52. ^ Tanygin, B.M. (2010). "Inhomogeneous Magnetoelectric Effect on Defect in Multiferroic Material: Symmetry Prediction". IOP Conf. Ser. Mater. Sci. Eng. 15: 012073. Bibcode:2010MS&E...15a2073T. arXiv:1007.3531Freely accessible. doi:10.1088/1757-899x/15/1/012073. 
  53. ^ Varshney, D.; et al. (2011). "Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics". J. Alloys Compd. 509: 8421–8426. doi:10.1016/j.jallcom.2011.05.106. 
  54. ^ Johnson, S. L.; et al. (2012). "Femtosecond Dynamics of the Collinear-to-Spiral Antiferromagnetic Phase Transition in CuO". Phys. Rev. Lett. 108: 037203. Bibcode:2012PhRvL.108c7203J. PMID 22400779. arXiv:1106.6128Freely accessible. doi:10.1103/PhysRevLett.108.037203. 
  55. ^ Kampfrath, T.; et al. (2011). "Coherent terahertz control of antiferromagnetic spin waves". Nat. Photonics. 5: 31–34. Bibcode:2011NaPho...5...31K. doi:10.1038/nphoton.2010.259. 
  56. ^ Gajek, M.; et al. (2007). "Tunnel junctions with multiferroic barriers". Nature Materials. 6: 296–302. Bibcode:2007NatMa...6..296G. doi:10.1038/nmat1860. 
  57. ^ Binek, C.; et al. (2005). "Magnetoelectronics with magnetoelectrics". J. Phys. Cond. Mat. 17: L39–L44. Bibcode:2005JPCM...17L..39B. doi:10.1088/0953-8984/17/2/l06. 
  58. ^ Ascher, E.; et al. (1966). "Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I". Journal of Applied Physics. 37 (3): 1404–1405. Bibcode:1966JAP....37.1404A. doi:10.1063/1.1708493.