NAND logic

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Because the NAND function has functional completeness all logic systems can be converted into NAND gates – the mathematical proof for this was published by Henry M. Sheffer in 1913 in the Transactions of the American Mathematical Society (Sheffer 1913). This is also true for NOR gates. In principle, any combinatorial logic function can be realized with enough NAND gates.

NAND[edit]

A NAND gate is an inverted AND gate. It has the following truth table:

NAND ANSI Labelled.svg

Q = A NAND B

Truth Table
Input A Input B Output Q
0 0 1
0 1 1
1 0 1
1 1 0

Making other gates by using NAND gates[edit]

A NAND gate is a universal gate, meaning that any other gate can be represented as a combination of NAND gates.

NOT[edit]

A NOT gate is made by joining the inputs of a NAND gate together. Since a NAND gate is equivalent to an AND gate followed by a NOT gate, joining the inputs of a NAND gate leaves only the NOT gate.

Desired NOT Gate NAND Construction
NOT ANSI Labelled.svg NOT from NAND.svg
Q = NOT( A ) = A NAND A
Truth Table
Input A Output Q
0 1
1 0

AND[edit]

An AND gate is made by inverting the output of a NAND gate as shown below.

Desired AND Gate NAND Construction
AND ANSI Labelled.svg AND from NAND.svg
Q = A AND B = ( A NAND B ) NAND ( A NAND B )
Truth Table
Input A Input B Output Q
0 0 0
0 1 0
1 0 0
1 1 1

OR[edit]

If the truth table for a NAND gate is examined or by applying De Morgan's Laws, it can be seen that if any of the inputs are 0, then the output will be 1. To be an OR gate, however, the output must be 1 if any input is 1. Therefore, if the inputs are inverted, any high input will trigger a high output.

Desired OR Gate NAND Construction
OR ANSI Labelled.svg OR from NAND.svg
Q = A OR B = ( A NAND A ) NAND ( B NAND B )
Truth Table
Input A Input B Output Q
0 0 0
0 1 1
1 0 1
1 1 1

NOR[edit]

A NOR gate is an OR gate with an inverted output. Output is high when neither input A nor input B is high.

Desired NOR Gate NAND Construction
NOR ANSI Labelled.svg NOR from NAND.svg
Q = A NOR B = [ ( A NAND A ) NAND ( B NAND B ) ] NAND
[ ( A NAND A ) NAND ( B NAND B ) ]
Truth Table
Input A Input B Output Q
0 0 1
0 1 0
1 0 0
1 1 0

XOR[edit]

An XOR gate is made by connecting four NAND gates as shown below. This construction entails a propagation delay three times that of a single NAND gate.

Desired XOR Gate NAND Construction
XOR ANSI Labelled.svg XOR from NAND.svg
Q = A XOR B = [ A NAND ( A NAND B ) ] NAND
[ B NAND ( A NAND B ) ]
Truth Table
Input A Input B Output Q
0 0 0
0 1 1
1 0 1
1 1 0

Alternatively, the B-input of the XNOR gate with the 3-gate propagation delay can be inverted. This construction uses five gates instead of four.

Desired Gate NAND Construction
XOR ANSI Labelled.svg XOR from NAND 2.svg
Q = A XOR B = [ B NAND ( A NAND A ) ] NAND
[ A NAND ( B NAND B ) ]

XNOR[edit]

An XNOR gate is made by connecting the output of 3 NAND gates (connected as an OR gate) and the output of a NAND gate to the respective inputs of a NAND gate. This construction entails a propagation delay three times that of a single NAND gate and uses five gates.

Desired XNOR Gate NAND Construction
XNOR ANSI Labelled.svg XNOR from NAND 2.svg
Q = A XNOR B = [ ( A NAND A ) NAND ( B NAND B ) ] NAND
( A NAND B )
Truth Table
Input A Input B Output Q
0 0 1
0 1 0
1 0 0
1 1 1

Alternatively, the 4-gate version of the XOR gate can be used with an inverter. This construction has a propagation delay four times (instead of three times) that of a single NAND gate.

Desired Gate NAND Construction
XNOR ANSI Labelled.svg XNOR from NAND.svg
Q = A XNOR B = { [ A NAND ( A NAND B ) ] NAND
[ B NAND ( A NAND B ) ] } NAND
{ [ A NAND ( A NAND B ) ]
NAND [ B NAND ( A NAND B ) ] }

MUX[edit]

A multiplexer or a MUX gate is a three-input gate that uses one of the inputs, called the selector bit, to select one of the other two inputs, called data bits, and outputs only the selected data bit.[1]

Desired MUX Gate NAND Construction
Q = [ A AND NOT( S ) ]
OR ( B AND S )
= [ A NAND ( S NAND S ) ]
NAND ( B NAND S )
Truth Table
Input A Input B Select Output Q
0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 0
1 1 1 1

DEMUX[edit]

A demultiplexer performs the opposite function of a multiplexer: It takes a single input and channels it to one of two possible outputs according to a selector bit that specifies which output to choose.[1]

Desired DEMUX Gate NAND Construction

DEMUX Gate

Truth Table
Input Select Output A Output B
0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

See also[edit]

External links[edit]

References[edit]

  1. ^ a b Nisan, N. & Schocken, S., 2005. In: From NAND to Tetris: Building a Modern Computer from First Principles. s.l.:The MIT Press, p. 20. Available at: http://www.nand2tetris.org/chapters/chapter%2001.pdf
  • Lancaster, Don (1974). TTL Cookbook (1st ed.). Indianapolis, IN: Howard W Sams. pp. 126–135. ISBN 0-672-21035-5.
  • Sheffer, H. M. (1913), "A set of five independent postulates for Boolean algebras, with application to logical constants", Transactions of the American Mathematical Society, 14: 481–488, doi:10.2307/1988701, JSTOR 1988701