From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Nano (symbol n) is a unit prefix meaning "one billionth". Used primarily with the metric system, this prefix denotes a factor of 10−9 or 0.000000001. It is frequently encountered in science and electronics for prefixing units of time and length.

  • Three gold atoms lined up are about one nanometer (nm) long.
  • If a toy marble were scaled down to one nanometer wide, Earth would scale to about 1 meter (3.3 ft) wide.[1]
  • One nanosecond (ns) is about the time required for light to travel 30 cm in air, or 20 cm in an optical fiber.
  • One nanometer per second (nm/s) is approximately the speed that a fingernail grows.

The prefix derives from the Greek νᾶνος (Latin nanus), meaning "dwarf". The General Conference on Weights and Measures (CGPM) officially endorsed the usage of nano as a standard prefix in 1960.

When used as a prefix for something other than a unit of measure (as for example in words like "nanoscience"), nano refers to nanotechnology, or means "on a scale of nanometres" (nanoscale).

Prefix Base 10 Decimal English word Adoption
[nb 1][3]
Name Symbol Short scale Long scale
quetta Q 1030 1000000000000000000000000000000 nonillion quintillion 2022
ronna R 1027 1000000000000000000000000000 octillion quadrilliard 2022
yotta Y 1024 1000000000000000000000000 septillion quadrillion 1991
zetta Z 1021 1000000000000000000000 sextillion trilliard 1991
exa E 1018 1000000000000000000 quintillion trillion 1975
peta P 1015 1000000000000000 quadrillion billiard 1975
tera T 1012 1000000000000 trillion billion 1960
giga G 109 1000000000 billion milliard 1960
mega M 106 1000000 million 1873
kilo k 103 1000 thousand 1795
hecto h 102 100 hundred 1795
deca da 101 10 ten 1795
100 1 one
deci d 10−1 0.1 tenth 1795
centi c 10−2 0.01 hundredth 1795
milli m 10−3 0.001 thousandth 1795
micro μ 10−6 0.000001 millionth 1873
nano n 10−9 0.000000001 billionth milliardth 1960
pico p 10−12 0.000000000001 trillionth billionth 1960
femto f 10−15 0.000000000000001 quadrillionth billiardth 1964
atto a 10−18 0.000000000000000001 quintillionth trillionth 1964
zepto z 10−21 0.000000000000000000001 sextillionth trilliardth 1991
yocto y 10−24 0.000000000000000000000001 septillionth quadrillionth 1991
ronto r 10−27 0.000000000000000000000000001 octillionth quadrilliardth 2022
quecto q 10−30 0.000000000000000000000000000001 nonillionth quintillionth 2022
  1. ^ Prefixes adopted before 1960 already existed before SI. The introduction of the CGS system was in 1873.


one nanometric carbon nanotube, photographed with scanning tunneling microscope
hey john
Different lengths as in respect to the electromagnetic spectrum, measured by the metre and its derived scales. The nanometre is often used to express dimensions on an atomic scale and mostly in the molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American spelling) is a unit of length in the International System of Units (SI), equal to one billionth (short scale) of a metre (0.000000001 m) and to 1000 picometres. One nanometre can be expressed in scientific notation as 1×10−9 m, and as 1/1000000000 metres.


A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, 11 000 000 000 of a second, or 10−9 seconds.

The term combines the SI prefix nano- indicating a 1 billionth submultiple of an SI unit (e.g. nanogram, nanometre, etc.) and second, the primary unit of time in the SI.

A nanosecond is equal to 1000 picoseconds or 11000 microsecond. Time units ranging between 10−8 and 10−7 seconds are typically expressed as tens or hundreds of nanoseconds.

Time units of this granularity are commonly found in telecommunications, pulsed lasers, and related aspects of electronics.

See also[edit]


  1. ^ "Size of the Nanoscale". National Nanotechnology Initiative. Retrieved 2020-05-14.
  2. ^ Gibney, Elizabeth (November 18, 2022). "How many yottabytes in a quettabyte? Extreme numbers get new names". Nature. doi:10.1038/d41586-022-03747-9 – via
  3. ^ "".