# Newman's lemma

In mathematics, in the theory of rewriting systems, Newman's lemma, also commonly called the diamond lemma, states that a terminating (or strongly normalizing) abstract rewriting system (ARS), that is, one in which there are no infinite reduction sequences, is confluent if it is locally confluent. In fact a terminating ARS is confluent precisely when it is locally confluent.

Equivalently, for every binary relation with no decreasing infinite chains and satisfying a weak version of the diamond property, there is a unique minimal element in every connected component of the relation considered as a graph.

Today, this is seen as a purely combinatorial result based on well-foundedness due to a proof of Gérard Huet in 1980. Newman's original proof was considerably more complicated.

## Diamond lemma Proof idea (straight and wavy lines denoting → and , respectively):
Given t1 tt2, perform an induction on the derivation length. Obtain t from local confluence, and t from the induction hypothesis; similar for t.

In general, Newman's lemma can be seen as a combinatorial result about binary relations → on a set A (written backwards, so that ab means that b is below a) with the following two properties:

• → is a well-founded relation: every non-empty subset X of A has a minimal element (an element a of X such that ab for no b in X). Equivalently, there is no infinite chain a0a1a2a3 → .... In the terminology of rewriting systems, → is terminating.
• Every covering is bounded below. That is, if an element a in A covers elements b and c in A in the sense that ab and ac, then there is an element d in A such that b d and c d, where denotes the reflexive transitive closure of →. In the terminology of rewriting systems, → is locally confluent.

If the above two conditions hold, then the lemma states that → is confluent: whenever a b and a c, there is an element d such that b d and c d. In view of the termination of →, this implies that every connected component of → as a graph contains a unique minimal element a, moreover b a for every element b of the component.