Isotopes of nickel

From Wikipedia, the free encyclopedia
  (Redirected from Nickel-58)
Jump to: navigation, search
Main isotopes of nickel
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
58Ni 68.077% stable
59Ni trace 7.6×104 y ε 59Co
60Ni 26.223% stable
61Ni 1.140% stable
62Ni 3.635% stable
63Ni syn 100 y β 63Cu
64Ni 0.926% stable
Standard atomic weight (Ar, standard)
  • 58.6934(4)[1]

Naturally occurring nickel (28Ni) is composed of five stable isotopes; 58
Ni
, 60
Ni
, 61
Ni
, 62
Ni
and 64
Ni
with 58
Ni
being the most abundant (68.077% natural abundance).[2] 26 radioisotopes have been characterised with the most stable being 59
Ni
with a half-life of 76,000 years, 63
Ni
with a half-life of 100.1 years, and 56
Ni
with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 1 meta state.

Notable isotopes[edit]

The 5 stable and 26 unstable isotopes of nickel range in atomic weight from 48
Ni
to 78
Ni
, and include:

Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20 neutrons 48
Ni
is "doubly magic" (like 208
Pb
) and therefore much more stable than would be expected from its position in the chart of nuclides.[3]

Nickel-56 is produced in large quantities in supernovas and the shape of the light curve of these supernovas display characteristic timescales corresponding to the decay of nickel-56 to cobalt-56 and then to iron-56.

Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture from copper-58 and EC + p from zinc-59.

Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. 59
Ni
has found many applications in isotope geology. 59
Ni
has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.

Nickel-60 is the daughter product of the extinct radionuclide 60
Fe
(half-life = 2.6 My). Because 60
Fe
had such a long half-life, its persistence in materials in the solar system at high enough concentrations may have generated observable variations in the isotopic composition of 60
Ni
. Therefore, the abundance of 60
Ni
present in extraterrestrial material may provide insight into the origin of the solar system and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early solar system. Therefore, so far, no actual age information has been attained from 60
Ni
excesses. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60.

Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies by EPR spectroscopy.[4]

Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, although fusion can form heavier isotopes. For instance, two 40
Ca
atoms can fuse to form 80
Kr
plus 4 electrons, liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon.

Nickel-63 has two main uses: Detection of explosives traces, and in certain kinds of electronic devices, such as surge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used in Electron capture detector in gas chromatography for the detection mainly of halogens.

Nickel-64 is another stable isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64

Nickel-78 is the element's heaviest isotope and is believed to have an important involvement in supernova nucleosynthesis of elements heavier than iron.[5]

List of isotopes[edit]

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay
mode(s)[6][n 1]
daughter
isotope(s)[n 2]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy (keV)
48
Ni
28 20 48.01975(54)# 10# ms
[>500 ns]
0+
49
Ni
28 21 49.00966(43)# 13(4) ms
[12(+5-3) ms]
7/2−#
50
Ni
28 22 49.99593(28)# 9.1(18) ms β+ 50Co 0+
51
Ni
28 23 50.98772(28)# 30# ms
[>200 ns]
β+ 51Co 7/2−#
52
Ni
28 24 51.97568(9)# 38(5) ms β+ (83%) 52Co 0+
β+, p (17%) 51Fe
53
Ni
28 25 52.96847(17)# 45(15) ms β+ (55%) 53Co (7/2−)#
β+, p (45%) 52Fe
54
Ni
28 26 53.95791(5) 104(7) ms β+ 54Co 0+
55
Ni
28 27 54.951330(12) 204.7(17) ms β+ 55Co 7/2−
56
Ni
28 28 55.942132(12) 6.075(10) d β+ 56
Co
0+
57
Ni
28 29 56.9397935(19) 35.60(6) h β+ 57
Co
3/2−
58
Ni
28 30 57.9353429(7) Observationally stable[n 3] 0+ 0.680769(89)
59
Ni
28 31 58.9343467(7) 7.6(5)×104 y EC (99%) 59
Co
3/2−
β+ (1.5x10−5%)[7]
60
Ni
28 32 59.9307864(7) Stable 0+ 0.262231(77)
61
Ni
28 33 60.9310560(7) Stable 3/2− 0.011399(6)
62
Ni
[n 4]
28 34 61.9283451(6) Stable 0+ 0.036345(17)
63
Ni
28 35 62.9296694(6) 100.1(20) y β 63
Cu
1/2−
63m
Ni
87.15(11) keV 1.67(3) µs 5/2−
64
Ni
28 36 63.9279660(7) Stable 0+ 0.009256(9)
65
Ni
28 37 64.9300843(7) 2.5172(3) h β 65
Cu
5/2−
65m
Ni
63.37(5) keV 69(3) µs 1/2−
66
Ni
28 38 65.9291393(15) 54.6(3) h β 66
Cu
0+
67
Ni
28 39 66.931569(3) 21(1) s β 67
Cu
1/2−
67m
Ni
1007(3) keV 13.3(2) µs β 67
Cu
9/2+
IT 67Ni
68
Ni
28 40 67.931869(3) 29(2) s β 68
Cu
0+
68m1
Ni
1770.0(10) keV 276(65) ns 0+
68m2
Ni
2849.1(3) keV 860(50) µs 5-
69
Ni
28 41 68.935610(4) 11.5(3) s β 69
Cu
9/2+
69m1
Ni
321(2) keV 3.5(4) s β 69
Cu
(1/2−)
IT 69Ni
69m2
Ni
2701(10) keV 439(3) ns (17/2−)
70
Ni
28 42 69.93650(37) 6.0(3) s β 70
Cu
0+
70m
Ni
2860(2) keV 232(1) ns 8+
71
Ni
28 43 70.94074(40) 2.56(3) s β 71
Cu
1/2−#
72
Ni
28 44 71.94209(47) 1.57(5) s β (>99.9%) 72
Cu
0+
β, n (<.1%) 71
Cu
73
Ni
28 45 72.94647(32)# 0.84(3) s β (>99.9%) 73
Cu
(9/2+)
β, n (<.1%) 72
Cu
74
Ni
28 46 73.94807(43)# 0.68(18) s β (>99.9%) 74
Cu
0+
β, n (<.1%) 73
Cu
75
Ni
28 47 74.95287(43)# 0.6(2) s β (98.4%) 75
Cu
(7/2+)#
β, n (1.6%) 74
Cu
76
Ni
28 48 75.95533(97)# 470(390) ms
[0.24(+55-24) s]
β (>99.9%) 76
Cu
0+
β, n (<.1%) 75
Cu
77
Ni
28 49 76.96055(54)# 300# ms
[>300 ns]
β 77
Cu
9/2+#
78
Ni
28 50 77.96318(118)# 120# ms
[>300 ns]
β 78
Cu
0+
  1. ^ Abbreviations:
    IT: Isomeric transition
  2. ^ Bold for stable isotopes
  3. ^ Believed to decay by β+β+ to 58Fe with a half-life over 7×1020 years
  4. ^ Highest binding energy per nucleon of all nuclides

Notes[edit]

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
  • Nuclide masses are given by IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).
  • Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights (CIAAW).

References[edit]

  1. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure Appl. Chem. 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. ^ "Isotopes of the Element Nickel". Science education. Jefferson Lab. 
  3. ^ "Discovery of doubly magic nickel". CERN Courier. 15 March 2000. Retrieved 2 April 2013. 
  4. ^ Maurice van Gastel; Wolfgang Lubitz (2009). "EPR Investigation of [NiFe] Hydrogenases". In Graeme Hanson; Lawrence Berliner. High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine. Dordrecht: Springer. pp. 441–470. ISBN 9780387848563. 
  5. ^ Davide Castelvecchi (2005-04-22). "Atom Smashers Shed Light on Supernovae, Big Bang". Sky & Telescope. 
  6. ^ "Universal Nuclide Chart". nucleonica. (Registration required (help)). 
  7. ^ I. Gresits; S. Tölgyesi (September 2003). "Determination of soft X-ray emitting isotopes in radioactive liquid wastes of nuclear power plants". Journal of Radioanalytical and Nuclear Chemistry. 258 (1): 107–112. 

See also[edit]

Isotopes of cobalt Isotopes of nickel Isotopes of copper
Table of nuclides