From Wikipedia, the free encyclopedia
3-Cyanpyridin Strukturformel.svg
Preferred IUPAC name
3D model (JSmol)
ECHA InfoCard 100.002.603 Edit this at Wikidata
EC Number
  • 202-863-0
  • InChI=1S/C6H4N2/c7-4-6-2-1-3-8-5-6/h1-3,5H
  • C1=CC(=CN=C1)C#N
Molar mass 104.112 g·mol−1
Density 1.1590
Melting point 51 °C (124 °F; 324 K)
Boiling point 206.9 °C (404.4 °F; 480.0 K)
Vapor pressure 0.296 mm Hg
P21/c (No. 14)
a = 3.808 Å, b = 13.120 Å, c = 10.591 Å
α = 90°, β = 97.97°, γ = 90°
GHS labelling:
GHS07: Exclamation mark
H302, H315, H319, H335
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P340, P305+P351+P338, P312, P321, P330, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Nicotinonitrile or 3-cyanopyridine is an organic compound with the formula NCC5H4N. The molecule consists of a pyridine ring with a nitrile group attached to the 3-position. A colorless solid, it is produced by ammoxidation of 3-methylpyridine:[2]

H3CC5H4N + NH3 + 1.5 O2 → NCC5H4N + 3 H2O

Nicotinonitrile is a precursor to the vitamin niacin.[3]

Nitrilase-catalyzed hydrolysis of 3-cyanopyridine by means of immobilized Rhodococcus rhodochrous J1[2] strains leads in quantitative yield to nicotinamide (vitamin B3).[4][5][6] The enzyme allows for a more selective synthesis as further hydrolysis of the amide to nicotinic acid is avoided.[7]

Oxidation of 3-cyanopyridine with hydrogen peroxide gives 3-cyanopyridine N-oxide, which hydrolyzes to nicotinic acid N-oxide, a precursor to pharmaceuticals.


  1. ^ Kubiak, R.; Janczak, J.; Śledź, M. (June 2002). "Crystal structures of 2- and 3-cyanopyridine". Journal of Molecular Structure. 610 (1–3): 59–64. Bibcode:2002JMoSt.610...59K. doi:10.1016/S0022-2860(02)00012-1.
  2. ^ a b Abe, Nobuyuki; Ichimura, Hisao; Kataoka, Toshiaki; Morishita, Sinji; Shimizu, Shinkichi; Shoji, Takayuki; Watanabe, Nanao (2007). "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_399.
  3. ^ Eggersdorfer, Manfred; Adam, Geo; John, Michael; Hähnlein, Wolfgang; Labler, Ludvik; Baldenius, Kai-U.; von dem Bussche-Hünnefeld, Linda; Hilgemann, Eckhard; Hoppe, Peter; Stürmer, Rainer; Weber, Fritz; Rüttimann, August; Moine, Gérard; Hohmann, Hans-Peter; Kurth, Roland; Paust, Joachim; Hähnlein, Wolfgang; Pauling, Horst; Weimann, Bernd-Jürgen; Kaesler, Bruno; Oster, Bernd; Fechtel, Ulrich; Kaiser, Klaus; de Potzolli, Bernd; Casutt, Michael; Koppe, Thomas; Schwarz, Michael; Weimann, Bernd-Jürgen; Hengartner, Urs; de Saizieu, Antoine; Wehrli, Christof; Blum, René (2000). Vitamins. Wiley-VCH Verlag GmbH & Co. KGaA. pp. 148–150. doi:10.1002/14356007.a27_443. ISBN 978-3527306732.
  4. ^ Nagasawa, Toru; Mathew, Caluwadewa Deepal; Mauger, Jacques; Yamada, Hideaki (1988). "Nitrile Hydratase-Catalyzed Production of Nicotinamide from 3-Cyanopyridine in Rhodococcus rhodochrous J1". Appl. Environ. Microbiol. 54 (7): 1766–1769. Bibcode:1988ApEnM..54.1766N. doi:10.1128/AEM.54.7.1766-1769.1988. PMC 202743. PMID 16347686.
  5. ^ Hilterhaus, L.; Liese, A. (2007). "Building Blocks". In Ulber, Roland; Sell, Dieter (eds.). White Biotechnology. Advances in Biochemical Engineering / Biotechnology. Vol. 105. Springer Science & Business Media. pp. 133–173. doi:10.1007/10_033. ISBN 9783540456957. PMID 17408083.
  6. ^ Schmidberger, J. W.; Hepworth, L. J.; Green, A. P.; Flitsch, S. L. (2015). "Enzymatic Synthesis of Amides". In Faber, Kurt; Fessner, Wolf-Dieter; Turner, Nicholas J. (eds.). Biocatalysis in Organic Synthesis 1. Science of Synthesis. Georg Thieme Verlag. pp. 329–372. ISBN 9783131766113.
  7. ^ Petersen, Michael; Kiener, Andreas (1999). "Biocatalysis". Green Chem. 1 (2): 99–106. doi:10.1039/A809538H.