Noise figure

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Noise figure (NF) and noise factor (F) are figures of merit that indicate degradation of the signal-to-noise ratio (SNR) that is caused by components in a signal chain. These figures of merit are used to evaluate the performance of an amplifier or a radio receiver, with lower values indicating better performance.

The noise factor is defined as the ratio of the output noise power of a device to the portion thereof attributable to thermal noise in the input termination at standard noise temperature T0 (usually 290 K). The noise factor is thus the ratio of actual output noise to that which would remain if the device itself did not introduce noise, or the ratio of input SNR to output SNR.

The noise factor and noise figure are related, with the former being a unitless ratio and the latter being the same ratio but expressed in units of decibels (dB).[1]

General[edit]

The noise figure is the difference in decibels (dB) between the noise output of the actual receiver to the noise output of an “ideal” receiver with the same overall gain and bandwidth when the receivers are connected to matched sources at the standard noise temperature T0 (usually 290 K). The noise power from a simple load is equal to kTB, where k is the Boltzmann constant, T is the absolute temperature of the load (for example a resistor), and B is the measurement bandwidth.

This makes the noise figure a useful figure of merit for terrestrial systems, where the antenna effective temperature is usually near the standard 290 K. In this case, one receiver with a noise figure, say 2 dB better than another, will have an output signal to noise ratio that is about 2 dB better than the other. However, in the case of satellite communications systems, where the receiver antenna is pointed out into cold space, the antenna effective temperature is often colder than 290 K.[2] In these cases a 2 dB improvement in receiver noise figure will result in more than a 2 dB improvement in the output signal to noise ratio. For this reason, the related figure of effective noise temperature is therefore often used instead of the noise figure for characterizing satellite-communication receivers and low-noise amplifiers.

In heterodyne systems, output noise power includes spurious contributions from image-frequency transformation, but the portion attributable to thermal noise in the input termination at standard noise temperature includes only that which appears in the output via the principal frequency transformation of the system and excludes that which appears via the image frequency transformation.

Definition[edit]

The noise factor F of a system is defined as[3]

where SNRi and SNRo are the input and output signal-to-noise ratios respectively. The SNR quantities are unitless power ratios. The noise figure NF is defined as the noise factor in units of decibels (dB):

where SNRi, dB and SNRo, dB are in units of (dB). These formulae are only valid when the input termination is at standard noise temperature T0 = 290 K, although in practice small differences in temperature do not significantly affect the values.

The noise factor of a device is related to its noise temperature Te:[4]

Attenuators have a noise factor F equal to their attenuation ratio L when their physical temperature equals T0. More generally, for an attenuator at a physical temperature T, the noise temperature is Te = (L − 1)T, giving a noise factor

Noise factor of cascaded devices[edit]

If several devices are cascaded, the total noise factor can be found with Friis' formula:[5]

where Fn is the noise factor for the n-th device, and Gn is the power gain (linear, not in dB) of the n-th device. The first amplifier in a chain usually has the most significant effect on the total noise figure because the noise figures of the following stages are reduced by stage gains. Consequently, the first amplifier usually has a low noise figure, and the noise figure requirements of subsequent stages is usually more relaxed.

Noise factor as a function of additional noise[edit]

The source outputs a signal of power and noise of power . Both signal and noise get amplified. However, in addition to the amplified noise from the source, the amplifier adds additional noise to its output denoted . Therefore, the SNR at the amplifier's output is lower than at its input.

The noise factor may be expressed as a function of the additional output referred noise power and the power gain of an amplifier.

Derivation[edit]

From the definition of noise factor[3]

and assuming a system which has a noisy single stage amplifier. The signal to noise ratio of this amplifier would include its own output referred noise , the amplified signal and the amplified input noise ,

Substituting the output SNR to the noise factor definition,[6]

In cascaded systems does not refer to the output noise of the previous component. An input termination at the standard noise temperature is still assumed for the individual component. This means that the additional noise power added by each component is independent of the other components.

Optical noise figure[edit]

The above describes noise in electrical systems. Electric sources generate noise with a power spectral density equal to kT, where k is the Boltzmann constant and T is the absolute temperature. However, there is also noise in optical systems. In these, the sources have no fundamental noise. Instead the energy quantization causes notable shot noise in the detector, corresponding to a noise power spectral density of hf where h is the Planck constant and f is the optical frequency.

In the 1990s, an optical noise figure has been defined.[7] This has been called Fpnf for photon number fluctuations.[8] The powers needed for SNR and noise factor calculation are the electrical powers caused by the current in a photodiode. SNR is the square of mean photocurrent divided by variance of photocurrent. Monochromatic or sufficiently attenuated light has a Poisson distribution of detected photons. If, during a detection interval the expectation value of detected photons is n then the variance is also n and one obtains SNRpnf,in = n2/n = n. Behind an optical amplifier with power gain G there will be a mean of Gn photons. In the limit of large n the variance of photons is Gn(2nsp(G-1)+1) where nsp is the spontaneous emission factor. One obtains SNRpnf,out = G2n2/(Gn(2nsp(G-1)+1)) = n/(2nsp(1-1/G)+1/G). Resulting optical noise factor is Fpnf = SNRpnf,in / SNRpnf,out = 2nsp(1-1/G)+1/G.

Fpnf is in conceptual conflict compared to the electrical noise factor, which is now called Fe:

Photocurrent is proportional to optical power. Optical power is proportional to squares of a field amplitude (electric or magnetic). So, the receiver is nonlinear in amplitude. The power needed for SNRpnf calculation is proportional to the 4th power of the signal amplitude. But for Fe in the electrical domain the power is proportional to the square of the signal amplitude.

At a certain electrical frequency, noise occurs in phase (I) and in quadrature (Q) with the signal. Both these quadratures are available behind the electrical amplifier. The same holds in an optical amplifier. But the direct detection photoreceiver needed for measurement of SNRpnf takes mainly the in-phase noise into account whereas quadrature noise can be neglected for highn. Also, the receiver outputs only one quadrature. So, one quadrature is lost.

For an optical amplifier with large G it holds Fpnf ≥ 2 whereas for an electrical amplifier it holds Fe ≥ 1.

Moreover, today's long-haul optical fiber communication is dominated by coherent optical I&Q receivers but Fpnf does not describe the SNR degradation observed in these.

The above conflicts are resolved by the optical in-phase and quadrature noise figure Fo,IQ.[9] It can be measured using a coherent optical I&Q receiver. In these, power of the output signal is proportional to the square of an optical field amplitude because they are linear in amplitude. They pass both quadratures. For an optical amplifier it holds Fo,IQ = nsp(1-1/G)+1/G ≥ 1. Quantity nsp(1-1/G) is the input-referred number of added noise photons per mode.

Fo,IQ and Fpnf can easily be converted into each other. For large G it holds Fo,IQ = Fpnf/2 or, when expressed in dB, Fo,IQ is 3 dB less than Fpnf.

Unified noise figure[edit]

Total noise power spectral density per mode is kT + hf. In the electrical domain hf can be neglected. In the optical domain kT can be neglected. In between, say, in the low THz or thermal domain, both will need to be considered. It is possible to blend between electrical and optical domains such that a universal noise figure is obtained.

This has been attempted by a noise figure Ffas[10] where the subscript stands for fluctuations of amplitude squares. At optical frequencies Ffas equals Fpnf and involves detection of only 1 quadrature. But the conceptual difference to Fe cannot be overcome: It seems impossible that for increasing frequency (from electrical to thermal to optical) 2 quadratures (in the electrical domain) gradually become 1 quadrature (in optical receivers which determine Ffas or Fpnf). The ideal noise factor would need to go from 1 (electrical) to 2 (optical), which is not intuitive. For unification of Fpnf with Fe, squares of signal amplitudes (powers in the electrical domain) must also gradually become 4th powers of amplitudes (powers in optical direct detection receivers), which seems impossible.

A consistent unification of optical and electrical noise figures is obtained for Fe and Fo,IQ. There are no contradictions because both these are in conceptual match (powers proportional to squares of amplitudes, linear, 2 quadratures, ideal noise factor equal to 1). Thermal noise kT and fundamental quantum noise hf are taken into account. The unified noise figure is FIQ = (kTFe + hfFo,IQ) / (kT + hf) = (kT(T + Te)) + hf(nsp(1-1/G)+1/G)) / (kT + hf).[9]

See also[edit]

References[edit]

  1. ^ "Noise temperature, Noise Figure and Noise Factor".
  2. ^ Agilent 2010, p. 7
  3. ^ a b Agilent 2010, p. 5.
  4. ^ Agilent 2010, p. 7 with some rearrangement from Te = T0(F − 1).
  5. ^ Agilent 2010, p. 8.
  6. ^ Aspen Core. Derivation of noise figure equations (DOCX), pp. 3–4
  7. ^ E. Desurvire, „Erbium doped fiber amplifiers: Principles and Applications“, Wiley, New York, 1994
  8. ^ H. A. Haus, "The noise figure of optical amplifiers," in IEEE Photonics Technology Letters, vol. 10, no. 11, pp. 1602-1604, Nov. 1998, doi: 10.1109/68.726763
  9. ^ a b R. Noe, "Consistent Optical and Electrical Noise Figure," in Journal of Lightwave Technology, 2022, doi: 10.1109/JLT.2022.3212936, https://ieeexplore.ieee.org/document/9915356
  10. ^ H. A. Haus, "Noise Figure Definition Valid From RF to Optical Frequencies," in IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 2, MARCH/APRIL 2000, pp. 240-247

External links[edit]

Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).