Non-surgical liposuction

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Non-surgical liposuction techniques use laser energy, radiofrequency, ultrasound or cold (cryolipolysis) to reduce fat.[1] Devices are applied directly to the skin of the treatment area and do not employ injections (as in injection lipolysis) or incisions (as in laser assisted liposuction). Although fat loss is more subtle with non-surgical lipolysis techniques compared to surgical liposuction, non-surgical lipolysis techniques have several advantages including reduced risk, reduced cost, and reduced healing time.[2] Laser,[3] radiofrequency,[4] and ultrasound[5] techniques provide additional advantages of tissue tightening.[6] Because there is no suction involved, terms such as laser lipolysis, cryolipolysis or body contouring are preferred to non-surgical liposuction.

History and development[edit]

In 2010, Zerona became the first non-invasive lipolysis device approved by the FDA following a randomized controlled trial demonstrating circumference reduction of the waist, hip, and thighs.[7] Zeltiq obtained FDA approval in 2010 for cryolipolysis of the flanks and additional approval in 2012 for cryolipolysis of the abdomen.[8] Strawberry was approved by the FDA in 2013[9] SculpSure, the world's first hyperthermic laser for non-invasive fat destruction, obtained FDA approval in 2015[10]

On January 21, 2005, Meridian Medical received FDA approval for the Lapex 2000.[11] On December 29, 2008, Meridian received FDA approval for the Lapex BCS.[12] In 2013, the lipo laser division of Meridian Co. Ltd. separated from the parent company to become YOLO Medical Inc., retaining the patents. During this transition, the Lapex line was rebranded as the YOLO Curve.[13] On April 24, 2015, YOLO Medical received FDA approval for the successor to the Curve, known as the Lipofina Laser System.[14]


Low level laser light[edit]

Low level laser light reduces the stability of adipocyte cell membranes, allowing cells to release their stores of fat without damaging the cell.[15][16] Because the fat is released into the extracellular space, cardio based exercise is usually promoted after the procedure. Exercise increases lymph flow and is thought to also promote the use of the lipids as an energy source. This is also why adequate hydration is encouraged. The laser technologies are differentiated mainly by the wavelength of light used.


Focused thermal ultrasound techniques work by raising the tissue temperature above 56 °C, resulting in coagulative necrosis of adipocytes, with sparing of vessels and nerves. Passive heating of the skin may also induce collagen remodeling.[17][18][19][20]


Radiofrequency devices work by producing an alternating flow, which creates an electric field over the skin. The electric field shifts polarity millions of times per second, that causes a change in orientation of charged particles.[21]


Cryolipolysis is the term for using cryogenics to induce lipolysis. Adipose tissue is cooled above freezing causing localized cell death and inflammation.[22]

Comparison to surgery[edit]

Costs vary, depending on treatment area and clinic prices. Total cost, rather than cost per treatment, is the relevant indicator. There may be one or two days of discomfort after each treatment, but no prolonged recovery time and no discontinuation of daily activities.[citation needed]

Legal status[edit]

On August 19, 2014, YOLO Medical filed a lawsuit alleging patent infringement against the following: Chromogenex Technologies Ltd., Chromogenex US, Inc., Strawberry – Laser Lipo Ltd., Lilia Enterprises, LLC., Lipolaser Centers of America, One Source Media, Brandon Robinson, Jon Perlman, M.D., David Halpern, M.D., Leonard Grossman, M.D., Stephen Ronan, M.D., F.A.C.S. and VB Laser Trim Clinic.[23]

Various lipolysis techniques ("actes de lyse adipocytaire à visée esthétique") including injection lipolysis, RF, laser, ultrasound, and cryolipolysis were forbidden in France by a decree of the French Public Health Authority on 11 April 2011. The decree was revised on 17 February 2012, distinguishing invasive techniques, which remain forbidden, from permitted non-invasive techniques; laser, RF, ultrasound and cryolipolysis that did not penetrate the skin became legal, and injection lipolysis and mesotherapy remained illegal. Laser devices that involve inserting the probe through the skin transcutaneously but do not suck out the liquefied material are also prohibited. Surgeons are permitted to perform surgical liposuction techniques using laser-assisted lipolysis so long as suction is performed.[24] [25]


  1. ^ Mulholland, R. Stephen; Malcolm D. Paul; Charbel Chalfoun (2011). "Noninvasive body contouring with radiofrequency, ultrasound, cryolipolysis, and low-level laser therapy". Clinics in Plastic Surgery. 38 (3): 503–520, vii–iii. doi:10.1016/j.cps.2011.05.002. ISSN 1558-0504. PMID 21824546. 
  2. ^ Fischer, John P.; Ari M. Wes; Joseph M. Serletti; Stephen J. Kovach (2013). "Complications in body contouring procedures: an analysis of 1797 patients from the 2005 to 2010 American College of Surgeons National Surgical Quality Improvement Program databases". Plastic and Reconstructive Surgery. 132 (6): 1411–1420. doi:10.1097/PRS.0b013e3182a806b3. ISSN 1529-4242. PMID 24005367. 
  3. ^ Jackson, Robert F.; Gregory C. Roche; Steven C. Shanks (2013). "A double-blind, placebo-controlled randomized trial evaluating the ability of low-level laser therapy to improve the appearance of cellulite". Lasers in Surgery and Medicine. 45 (3): 141–147. doi:10.1002/lsm.22119. ISSN 1096-9101. PMID 23508376. 
  4. ^ Alster, Tina S.; Jason R. Lupton (2007). "Nonablative cutaneous remodeling using radiofrequency devices". Clinics in Dermatology. 25 (5): 487–491. doi:10.1016/j.clindermatol.2007.05.005. ISSN 0738-081X. Retrieved 2014-06-16. 
  5. ^ Minkis, Kira; Murad Alam (2014). "Ultrasound skin tightening". Dermatologic Clinics. 32 (1): 71–77. doi:10.1016/j.det.2013.09.001. ISSN 1558-0520. PMID 24267423. 
  6. ^ Goldman, Mitchel P.; Richard E. Fitzpatrick; E. Victor Ross; Suzanne L. Kilmer; Robert A. Weiss (2013). Lasers and Energy Devices for the Skin. CRC Press. ISBN 9781841849331. 
  7. ^ Jackson, Robert F.; Doug D. Dedo; Greg C. Roche; David I. Turok; Ryan J. Maloney (Dec 2009). "Low-level laser therapy as a non-invasive approach for body contouring: a randomized, controlled study". Lasers in Surgery and Medicine. 41 (10): 799–809. doi:10.1002/lsm.20855. ISSN 1096-9101. PMID 20014253. 
  8. ^ "510(k) filing for Zelitq CoolSculpting" (PDF). 2012. 
  9. ^ "510(k) filing for Laser Lipo Ltd Strawberry" (PDF). 2013. 
  10. ^ "510(k) Premarket filing for SculpSure". 2015. 
  11. ^ K034009, FDA (2005), "510(k) Premarket Notification", 
  12. ^ K081962, FDA (2008), "510(k) Premarket Notification", 
  13. ^ YOLO Medical, PR (2013), "YOLO Medical Now Manufacturing In Canada", 
  14. ^ K143741, FDA (2015), "510(k) Premarket Notification", 
  15. ^ Nestor, Mark S.; Newburger, Jessica; Zarraga, Matthew B. (March 2013). "Body contouring using 635-nm low level laser therapy". Seminars in Cutaneous Medicine and Surgery. 32 (1): 35–40. ISSN 1085-5629. PMID 24049928. 
  16. ^ Neira, Rodrigo; Arroyave, José; Ramirez, Hugo; Ortiz, Clara Lucía; Solarte, Efrain; Sequeda, Federico; Gutierrez, Maria Isabel (2002-09-01). "Fat liquefaction: effect of low-level laser energy on adipose tissue". Plastic and Reconstructive Surgery. 110 (3): 912–922; discussion 923–925. doi:10.1097/00006534-200209010-00030. ISSN 0032-1052. PMID 12172159. 
  17. ^ Fabi, Sabrina Guillen (2015). "Noninvasive skin tightening: focus on new ultrasound techniques". Clinical, Cosmetic and Investigational Dermatology. 8: 47–52. doi:10.2147/CCID.S69118. ISSN 1178-7015. PMC 4327394Freely accessible. PMID 25709486. 
  18. ^ Jewell, Mark L.; Solish, Nowell J.; Desilets, Charles S. (October 2011). "Noninvasive body sculpting technologies with an emphasis on high-intensity focused ultrasound". Aesthetic Plastic Surgery. 35 (5): 901–912. doi:10.1007/s00266-011-9700-5. ISSN 1432-5241. PMID 21461627. 
  19. ^ "Effect of low-intensity, low-frequency ultrasound treatment on anthropometry, subcutaneous adipose tissue, and body composition of young normal weight females". J Cosmet Dermatol. 13: 202–7. Sep 2014. doi:10.1111/jocd.12101. PMID 25196687. 
  20. ^ "Use of transcutaneous ultrasound for lipolysis and skin tightening: a review". Aesthetic Plast Surg. 38: 429–41. Apr 2014. doi:10.1007/s00266-014-0286-6. PMID 24567045. 
  21. ^ Orringer, Jeffrey; S Dover, Jeffrey; Alam, Murad. "Body Shaping, Skin, Fat, Cellulite": 21. ISBN 978-0-323-32197-6. 
  22. ^ Zelickson, Brian; Egbert, Barbara M.; Preciado, Jessica; Allison, John; Springer, Kevin; Rhoades, Robert W.; Manstein, Dieter (October 2009). "Cryolipolysis for noninvasive fat cell destruction: initial results from a pig model". Dermatologic Surgery. 35 (10): 1462–1470. doi:10.1111/j.1524-4725.2009.01259.x. ISSN 1524-4725. PMID 19614940. 
  23. ^ PR Newswire, UBM (2014), "YOLO Medical sues Chromogenex Technologies Strawberry - Laser Lipo for patent infringement", 
  24. ^ "Décret n° 2011-382 du 11 avril 2011 relatif à l'interdiction de la pratique d'actes de lyse adipocytaire à visée esthétique",, 2011, retrieved 2015-01-08 
  25. ^ Touraine, Marisol (2012), "Questions / answers on the prohibition order of lipolyses",