Nonlinear Dirac equation

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
See Ricci calculus and Van der Waerden notation for the notation.

In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self-interacting electrons.[1][2][3][4][5]

The nonlinear Dirac equation appears in the Einstein-Cartan-Sciama-Kibble theory of gravity, which extends general relativity to matter with intrinsic angular momentum (spin).[6][7] This theory removes a constraint of the symmetry of the affine connection and treats its antisymmetric part, the torsion tensor, as a variable in varying the action. In the resulting field equations, the torsion tensor is a homogeneous, linear function of the spin tensor. The minimal coupling between torsion and Dirac spinors thus generates an axial-axial, spin–spin interaction in fermionic matter, which becomes significant only at extremely high densities. Consequently, the Dirac equation becomes nonlinear (cubic) in the spinor field,[8][9] which causes fermions to be spatially extended and may remove the ultraviolet divergence in quantum field theory.[10]


Two common examples are the massive Thirring model and the Soler model.

Thirring model[edit]

The Thirring model[11] was originally formulated as a model in (1 + 1) space-time dimensions and is characterized by the Lagrangian density

where ψ ∈ ℂ2 is the spinor field, ψ = ψ*γ0 is the Dirac adjoint spinor,

(Feynman slash notation is used), g is the coupling constant, m is the mass, and γμ are the two-dimensional gamma matrices, finally μ = 0, 1 is an index.

Soler model[edit]

The Soler model[12] was originally formulated in (3 + 1) space-time dimensions. It is characterized by the Lagrangian density

using the same notations above, except

is now the four-gradient operator contracted with the four-dimensional Dirac gamma matrices γμ, so therein μ = 0, 1, 2, 3.

Einstein-Cartan theory[edit]

The Lagrangian density for a Dirac spinor field is given by ()


is the Fock-Ivanenko covariant derivative of a spinor with respect to the affine connection, is the spin connection, is the determinant of the metric tensor , and the Dirac matrices satisfy

The resulting Dirac equation is

where is the general-relativistic covariant derivative of a spinor. The cubic term in this equation becomes significant at densities on the order of .

See also[edit]


  1. ^ Д.Д. Иваненко (1938). "Замечание к теории взаимодействия через частицы" [translated in: D.D. Ivanenko, Notes to the theory of interaction via particles, Sov. Phys. JETP 13 (1938), 141)] (PDF). ЖЭТФ. 8: 260–266. 
  2. ^ R. Finkelstein; R. LeLevier & M. Ruderman (1951). "Nonlinear spinor fields". Phys. Rev. 83: 326–332. Bibcode:1951PhRv...83..326F. doi:10.1103/PhysRev.83.326. 
  3. ^ R. Finkelstein; C. Fronsdal & P. Kaus (1956). "Nonlinear Spinor Field". Phys. Rev. 103 (5): 1571–1579. Bibcode:1956PhRv..103.1571F. doi:10.1103/PhysRev.103.1571. 
  4. ^ W. Heisenberg (1957). "Quantum Theory of Fields and Elementary Particles". Rev. Mod. Phys. 29 (3): 269–278. Bibcode:1957RvMP...29..269H. doi:10.1103/RevModPhys.29.269. 
  5. ^ Gross, David J. and Neveu, André (1974). "Dynamical symmetry breaking in asymptotically free field theories". Phys. Rev. D. 10 (10): 3235–3253. Bibcode:1974PhRvD..10.3235G. doi:10.1103/PhysRevD.10.3235. 
  6. ^ Dennis W. Sciama, "The physical structure of general relativity". Rev. Mod. Phys. 36, 463-469 (1964).
  7. ^ Tom W. B. Kibble, "Lorentz invariance and the gravitational field". J. Math. Phys. 2, 212-221 (1961).
  8. ^ F. W. Hehl & B. K. Datta (1971). "Nonlinear spinor equation and asymmetric connection in general relativity". J. Math. Phys. 12: 1334–1339. Bibcode:1971JMP....12.1334H. doi:10.1063/1.1665738. 
  9. ^ Friedrich W. Hehl; Paul von der Heyde; G. David Kerlick & James M. Nester (1976). "General relativity with spin and torsion: Foundations and prospects". Rev. Mod. Phys. 48: 393–416. Bibcode:1976RvMP...48..393H. doi:10.1103/RevModPhys.48.393. 
  10. ^ Nikodem J. Popławski (2010). "Nonsingular Dirac particles in spacetime with torsion". Phys. Lett. B. 690: 73–77. arXiv:0910.1181Freely accessible. Bibcode:2010PhLB..690...73P. doi:10.1016/j.physletb.2010.04.073. 
  11. ^ Walter Thirring (1958). "A soluble relativistic field theory". Annals of Physics. 3 (1): 91–112. Bibcode:1958AnPhy...3...91T. doi:10.1016/0003-4916(58)90015-0. 
  12. ^ Mario Soler (1970). "Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy". Phys. Rev. D. 1 (10): 2766–2769. Bibcode:1970PhRvD...1.2766S. doi:10.1103/PhysRevD.1.2766.