From Wikipedia, the free encyclopedia
Jump to: navigation, search
Preferred IUPAC name
Other names
3D model (JSmol)
ECHA InfoCard 100.007.152
EC Number 207-866-0
Molar mass 94.16 g·mol−1
Appearance White solid
Melting point 42 to 46 °C (108 to 115 °F; 315 to 319 K)
Boiling point 96 °C (205 °F; 369 K)
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point −15 °C (5 °F; 258 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Norbornene or norbornylene or norcamphene is a bridged cyclic hydrocarbon. It is a white solid with a pungent sour odor. The molecule consists of a cyclohexene ring with a methylene bridge between C-3 and C-6. The molecule carries a double bond which induces significant ring strain and significant reactivity.

Norbornene, like many of its derivatives, is made by a Diels-Alder reaction of cyclopentadiene and ethylene.[2][3] Related bicyclics are norbornadiene which has the same carbon skeleton but with two double bonds and norbornane which is completely saturated without double bonds.

Norbornene undergoes an acid-catalyzed hydration reaction with water to form norborneol. This reaction is of great interest to chemists studying non-classical ions.


Norbornene does not have as many practical uses as ethylene or other commodity chemicals. It is utilized to make pharmaceutical intermediates, pesticide compounds, specialty fragrances and in general organic synthesis. When combined with ethylene, norbornene will react and turn into a cyclic olefin copolymer.

Norbornene is commonly used in transition metal catalysis to effect the migration of electrophilic transition metals. This reactivity is prominently exploited in the Catellani reaction and in norbornene-mediated meta-C-H activation.[4] It is also commonly used in transition metal catalysis as a sacrificial hydrogen acceptor.[citation needed]


Norbornenes are important monomers in ring-opening metathesis polymerizations (ROMP) with for instance the Grubbs' catalyst. Polynorbornenes are polymers with high glass transition temperatures and high optical clarity.[5]

Norbornene ROMP

In addition to ROMP polymerization, norbornene monomers also undergo vinyl-addition polymerization.

Polynorbornene is used mainly in the rubber industry for anti-vibration (rail, building, industry), anti-impact (personal protective equipment, shoe parts, bumpers) and grip improvement (toy tires, racing tires, transmission systems, transports systems for copiers, feeders, etc.)

Ethylidene norbornene is a related monomer derived from cyclopentadiene and butadiene.


  1. ^ Norbornene MSDS
  2. ^ Paul Binger, Petra Wedemann, and Udo H. Brinker. "Cyclopropene: A New Simple Synthesis and its Diels-Alder Reaction with Cyclopentadiene". Org. Synth. ; Coll. Vol., 10, p. 231 
  3. ^ Masaji Oda, Takeshi Kawase, Tomoaki Okada, and Tetsuya Enomoto. "2-Cyclohexene-1,4-dione". Org. Synth. ; Coll. Vol., 9, p. 186 
  4. ^ Thansandote, Praew; Chong, Eugene; Feldmann, Kai-Oliver; Lautens, Mark (21 May 2010). "Palladium-Catalyzed Domino C−C/C−N Coupling Using a Norbornene Template: Synthesis of Substituted Benzomorpholines, Phenoxazines, and Dihydrodibenzoxazepines". The Journal of Organic Chemistry. 75 (10): 3495–3498. PMID 20423091. doi:10.1021/jo100408p. 
  5. ^ Mol, J. C. Journal of Molecular Catalysis A: Chemical 2004, 213 (2), 39-45.