Normal convergence

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics normal convergence is a type of convergence for series of functions. Like absolute-convergence, it has the useful property that it is preserved when the order of summation is changed.

History[edit]

The concept of normal convergence was first introduced by René Baire in 1908 in his book Leçons sur les théories générales de l'analyse.

Definition[edit]

Given a set S and functions (or to any normed vector space), the series

is called normally convergent if the series of uniform norms of the terms of the series converges,[1] i.e.,

Distinctions[edit]

Normal convergence implies, but should not be confused with, uniform absolute convergence, i.e. uniform convergence of the series of nonnegative functions . To illustrate this, consider

Then the series is uniformly convergent (for any ε take n ≥ 1/ε), but the series of uniform norms is the harmonic series and thus diverges. An example using continuous functions can be made by replacing these functions with bump functions of height 1/n and width 1 centered at each natural number n.

As well, normal convergence of a series is different from norm-topology convergence, i.e. convergence of the partial sum sequence in the topology induced by the uniform norm. Normal convergence implies norm-topology convergence if and only iff the space of functions under consideration is complete with respect to the uniform norm. (The converse does not hold even for complete function spaces: for example, consider the harmonic series as a sequence of constant functions).

Generalizations[edit]

Local normal convergence[edit]

A series can be called "locally normally convergent on X" if each point x in X has a neighborhood U such that the series of functions fn restricted to the domain U

is normally convergent, i.e. such that

where the norm is the supremum over the domain U.

Compact normal convergence[edit]

A series is said to be "normally convergent on compact subsets of X" or "compactly normally convergent on X" if for every compact subset K of X, the series of functions fn restricted to K

is normally convergent on K.

Note: if X is locally compact (even in the weakest sense), local normal convergence and compact normal convergence are equivalent.

Properties[edit]

  • Every normal convergent series is uniformly convergent, locally uniformly convergent, and compactly uniformly convergent. This is very important, since it assures that any re-arrangement of the series, any derivatives or integrals of the series, and sums and products with other convergent series will converge to the "correct" value.
  • If is normally convergent to , then any re-arrangement of the sequence (f1, f2, f3 ...) also converges normally to the same f. That is, for every bijection , is normally convergent to .

See also[edit]

References[edit]