Nuclear graphite

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Core graphite from the Molten-Salt Reactor Experiment

Nuclear graphite is any grade of graphite, usually synthetic graphite, specifically manufactured for use as a moderator or reflector within a nuclear reactor. Graphite is an important material for the construction of both historical and modern nuclear reactors, due to its extreme purity and its ability to withstand extremely high temperatures.


The potential for creating a nuclear chain reaction in uranium became apparent in 1939 following the nuclear fission experiments of Otto Hahn and Fritz Strassman, and the interpretation of these results by Lise Meitner and Otto Frisch.[1] The exciting possibilities that this presented rapidly spread throughout the world physics community. In order for the fission process to chain react, the neutrons created by uranium fission must be slowed down by interacting with a neutron moderator (an element with a low atomic weight, that will "bounce", when hit by a neutron) before they will be captured by other uranium atoms. It became well known by late 1939 that the two most promising moderators were heavy water and graphite.[2]

In February 1940, using funds that were allocated partly as a result of the Einstein-Szilard letter to President Roosevelt, Leo Szilard purchased several tons of graphite from the Speer Carbon Company and from the National Carbon Company (the National Carbon Division of the Union Carbide and Carbon Corporation in Cleveland Ohio) for use in Enrico Fermi's first fission experiments, the so-called exponential pile.[3]:190 Fermi writes that "The results of this experiment was [sic] somewhat discouraging"[4] presumably due to the absorption of neutrons by some unknown impurity.[5]:40 So, in December 1940 Fermi and Szilard met with Herbert G. MacPherson and V. C. Hamister at National Carbon to discuss the possible existence of impurities in graphite.[6]:143 During this conversation it became clear that minute quantities of boron impurities were the source of the problem.[2][7]

As a result of this meeting, over the next two years, MacPherson and Hamister developed thermal and gas extraction purification techniques at National Carbon for the production of boron-free graphite.[7][8] The resulting product was designated AGOT Graphite ("Atcheson Graphite Ordinary Temperature") by National Carbon, and it was "the first true nuclear grade graphite".[9]

During this period, Fermi and Szilard purchased graphite from several manufacturers with various degrees of neutron absorption cross section: AGX graphite from National Carbon Company with 6.68 mb (millibarns) cross section, US graphite from United States Graphite Company with 6.38 mb cross section, Speer graphite from the Speer Carbon Company with 5.51 mb cross section, and when it became available, AGOT graphite from National Carbon, with 4.97 mb cross section.[5]:178[10]:4 (See also Haag [2005].) By November 1942 National Carbon had shipped 250 tons of AGOT graphite to the University of Chicago[3]:200 where it became the primary source of graphite to be used in the construction of Fermi's Chicago Pile-1, the first nuclear reactor to generate a sustained chain reaction (December 2, 1942).[5]:295 AGOT graphite was used to build the X-10 graphite reactor in Oak Ridge TN (early 1943) and the first reactors at the Hanford Site in Washington (mid 1943),[10]:5 for the production of plutonium during and after World War II.[7][9] The AGOT process and its later refinements became standard techniques in the manufacture of nuclear graphite.[10]

The neutron cross section of graphite was also investigated during the second world war in Germany by Walter Bothe, P. Jensen, and Werner Heisenberg. The purest graphite available to them was a product from the Siemens Plania company, which exhibited a neutron absorption cross section of about 6.4 mb[11]:370 to 7.5 mb (Haag 2005). Heisenberg therefore decided that graphite would be unsuitable as a moderator in a reactor design using natural uranium, due to this apparently high rate of neutron absorption.[2][11][12] Consequently, the German effort to create a chain reaction involved attempts to use heavy water, an expensive and scarce alternative, made all the more difficult to acquire as a consequence of the Norwegian heavy water sabotage by Norwegian and Allied forces. Writing as late as 1947, Heisenberg still did not understand that the only problem with graphite was the boron impurity.[12]

Wigner effect[edit]

In December 1942 Eugene Wigner suggested[13] that neutron bombardment might introduce dislocations and other damage in the molecular structure of materials such as the graphite moderator in a nuclear reactor (the Wigner effect). The resulting buildup of energy in the material became a matter of concern[9]:5 The possibility was suggested that graphite bars might fuse together as chemical bonds at the surface of the bars are opened and closed again. Even the possibility that the graphite parts might very quickly break into small pieces could not be ruled out. However, the first power-producing reactors (X-10 Graphite Reactor and Hanford B Reactor) had to be built without such knowledge. Cyclotrons, which were the only fast neutron sources available, would take several months to produce neutron irradiation equivalent to one day in a Hanford reactor.

This was the starting point for large-scale research programmes to investigate the property changes due to fast particle radiation and to predict their influence on the safety and the lifetime of graphite reactors to be built. Influences of fast neutron radiation on strength, electrical and thermal conductivity, thermal expansivity, dimensional stability, on the storage of internal energy (Wigner energy), and on many other properties have been observed many times and in many countries after the first results emerged from the X-10 reactor in 1944.

Although catastrophic behaviour such as fusion or crumbling of graphite pieces has never occurred, large changes in many properties do result from fast neutron irradiation which need to be taken into account when graphite components of nuclear reactors are designed. Although not all effects are well understood yet, more than 100 graphite reactors have successfully operated in the last 60 years. A few severe accidents in graphite reactors can in no case be attributed to a lack of knowledge or insufficient properties of the graphite in use.[citation needed]


Reactor-grade graphite must be free of neutron absorbing materials, especially boron, which has a large neutron capture cross section. Boron sources in graphite include the raw materials, the packing materials used in baking the product, and even the choice of soap (for example, borax) used to launder the clothing worn by workers in the machine shop.[10]:80 Boron concentration in thermally purified graphite (such as AGOT graphite) can be less than 0.4 ppm[10]:81 and in chemically purified nuclear graphite it is less than 0.06 ppm.[10]:47

Behaviour under irradiation[edit]

This describes the behavior of nuclear graphite, specifically when exposed to fast neutron irradiation.

Specific phenomena addressed:


Nuclear graphite for the UK Magnox reactors was manufactured from petroleum coke mixed with coal-based binder pitch heated and extruded into billets, and then baked at 1,000 °C for several days. To reduce porosity and increase density, the billets were impregnated with coal tar at high temperature and pressure before a final bake at 2,800 °C. Individual billets were then machined into the final required shapes.[14]

The manufacturing process is designed to ensure uniformity in material properties. However, despite this care, recent research using stochastic finite element analysis[15] has shown that tiny spatial variations in material properties may play a significant role in how a graphite component ages.[16] A study carried out in 2016 provides data for the spatial variation of properties such as density and Young's modulus within a typical billet. [17]

Accidents in graphite-moderated reactors[edit]

There have been two major accidents in graphite-moderated reactors, the Windscale fire and the Chernobyl disaster.

In the Windscale fire, an untested annealing process for the graphite was used, causing overheating in unmonitored areas of the core and leading directly to the ignition of the fire; however, the material that caught fire was not, in fact, the graphite moderator itself, but rather the canisters of metallic uranium fuel within the reactor. When the fire was extinguished, it was found that the only areas of the graphite moderator to have incurred thermal damage were those that had been in immediate close proximity to the actively burning fuel canisters.[18][19]

In the Chernobyl disaster, the moderator was not primarily responsible for the primary event; instead, a massive power excursion during a mishandled test caused the catastrophic failure of the reactor vessel and a near-total loss of coolant supply, and as a result, the fuel rods rapidly melted and flowed together while in an extremely-high-power state, causing a small portion of the core to reach a state of runaway prompt criticality and leading to a massive energy release,[20] resulting in the explosion of the reactor core and the destruction of the reactor building. However, the massive energy release during the primary event superheated the graphite of the moderator, and the disruption of the reactor vessel and building allowed the superheated graphite to come into contact with atmospheric oxygen; as a result, the graphite moderator caught fire, sending a plume of highly radioactive fallout into the atmosphere and over a very widespread area.[21]


  • Haag, G. 2005, Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation, FZ-Juelich, Juel-4813.
  1. ^ Roberts, R. B.; Kuiper, J. B. H. (1939), "Uranium and Atomic Power", Journal of Applied Physics, 10: 612–614, Bibcode:1939JAP....10..612R, doi:10.1063/1.1707351 
  2. ^ a b c Bethe, Hans (2000), "The German Uranium Project", Physics Today, American Institute of Physics, 53 (7): 34–36, Bibcode:2000PhT....53g..34B, doi:10.1063/1.1292473 
  3. ^ a b Salvetti, Carlo (2001). "Fermi's Pile". In C. Bernardini and L. Bonolis. Enrico Fermi: His work and legacy. New York N. Y.: Springer Verlag. pp. 177–203. ISBN 3540221417. 
  4. ^ Fermi, Enrico (1946), "Development of the First chain reacting pile", Proceedings of the Americal Philosophical Society, 90 (1): 2024 
  5. ^ a b c Fermi, Enrico (1965). Collected Papers. 2. University of Chicago Press. 
  6. ^ Szilard, Gertrude; Weart, Spencer (1978). Leo Szilard: His Version of the Facts. II. MIT Press. ISBN 0262191687. 
  7. ^ a b c Weinberg, Alvin (1994), "Herbert G. MacPherson", Memorial Tributes, 7, National Academy of Engineering Press, pp. 143–147 
  8. ^ Currie, L. M.; Hamister, V. C.; MacPherson, H. G. (1955). The Production and Properties of Graphite for Reactors. National Carbon Company. 
  9. ^ a b c Eatherly, W. P. (1981), "Nuclear graphite - the first years", Journal of Nuclear Materials, 100: 55–63, Bibcode:1981JNuM..100...55E, doi:10.1016/0022-3115(81)90519-5 
  10. ^ a b c d e f Nightingale, R. E. (1962). Nuclear Graphite. Division of Technical Information, United States Atomic Energy Commission. Academic Press. ISBN 0125190506. 
  11. ^ a b Hentschel, Klaus (ed.); Hentschel, Anne M. (translator) (1996), "Document 115", Physics and National Socialism: An Anthology of Primary Sources (English translation of Heisenberg 1947), Birkhäuser, pp. 361–379, ISBN 978-3-0348-0202-4 
  12. ^ a b Heisenberg, Werner (16 August 1947), "Research in Germany on the Technical Applications of Atomic Energy", Nature, 160 (4059): 211–215, Bibcode:1947Natur.160..211H, doi:10.1038/160211a0 
  13. ^ Fermi, Enrico (1942), "Report for Month Ending December 15, 1942, Physics Division", United States Atomic Energy Commission report CP-387 
  14. ^ Gareth B. Neighbour (2007). Management of ageing in graphite reactor cores. Royal Society of Chemistry. ISBN 978-0-85404-345-3. Retrieved 2009-06-15. 
  15. ^ Arregui Mena, J.D.; Margetts, L.; et al. (2014). "Practical Application of the Stochastic Finite Element Method". Archives of Computational Methods in Engineering. 23 (1): 171–190. doi:10.1007/s11831-014-9139-3. 
  16. ^ Arregui Mena, J.D.; Margetts, L.; et al. (2015). "Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks". Journal of Nuclear Materials. 465: 793–804. doi:10.1016/j.jnucmat.2015.05.058. 
  17. ^ Arregui Mena, J.D.; et al. (2016). "Spatial variability in the mechanical properties of Gilsocarbon". Carbon. 110: 497–517. doi:10.1016/j.carbon.2016.09.051. 
  18. ^ "Meeting of RG2 with Windscale Pile 1 Decommissioning Project Team" (PDF). Nuclear Safety Advisory Committee. 2005-09-29. NuSAC(2005)P 18. Retrieved 2008-11-26. 
  19. ^ Marsden, B.J.; Preston, S.D.; Wickham, A.J. (8–10 September 1997). "Evaluation of graphite safety issues for the British production piles at Windscale]". AEA Technology. IAEA. IAEA-TECDOC—1043. Retrieved 13 November 2010. 
  20. ^ Pakhomov, Sergey A.; Dubasov, Yuri V. (2009). "Estimation of Explosion Energy Yield at Chernobyl NPP Accident". Pure and Applied Geophysics. 167 (4–5): 575. Bibcode:2010PApGe.167..575P. doi:10.1007/s00024-009-0029-9. 
  21. ^ "Frequently Asked Chernobyl Questions". International Atomic Energy Agency – Division of Public Information. May 2005. Retrieved 23 March 2011.