Oliver Heaviside

From Wikipedia, the free encyclopedia
Jump to: navigation, search
"Heaviside" redirects here. For other uses, see Heaviside (disambiguation).
Oliver Heaviside
Oheaviside.jpg
Born (1850-05-18)18 May 1850
Camden Town, London, England
Died 3 February 1925(1925-02-03) (aged 74)
Torquay, Devon, England
Residence England
Nationality English
Fields Electrical engineering, mathematics and physics
Institutions Great Northern Telegraph Company
Known for Heaviside cover-up method
Kennelly–Heaviside layer
Reactance
Heaviside step function
Differential operators
Vector analysis
Heaviside condition
Coaxial cable
Notable awards Faraday Medal (1922)
Fellow of the Royal Society[1]
Notes
Famous quote: Shall I refuse my dinner because I do not fully understand the process of digestion?

Oliver Heaviside FRS[1] (/ˈɒlɪvər ˈhɛvisd/; 18 May 1850 – 3 February 1925) was a self-taught English electrical engineer, mathematician, and physicist who adapted complex numbers to the study of electrical circuits, invented mathematical techniques for the solution of differential equations (later found to be equivalent to Laplace transforms), reformulated Maxwell's field equations in terms of electric and magnetic forces and energy flux, and independently co-formulated vector analysis. Although at odds with the scientific establishment for most of his life, Heaviside changed the face of mathematics and science for years to come.[2]

Biography[edit]

Early years[edit]

Heaviside was born at 55 Kings Street[3] (now Plender Street) in London's Camden Town. He was short and red-headed, and suffered from scarlet fever when young, which left him with a hearing impairment. A small legacy enabled the family to move to a better part of Camden when he was thirteen and he was sent to Camden House Grammar School. He was a good student (e.g. placed fifth out of five hundred students in 1865) but his parents couldn't keep him at school after he was 16 so he continued studying for a year by himself.[4]

Heaviside's uncle by marriage was Sir Charles Wheatstone (1802–1875), the original co-inventor of the first commercially succesful telegraph in the mid-1830s, and an internationally celebrated expert in telegraphy and electromagnetism. Wheatstone took a strong interest in his nephew's education[5] and in 1867 sent him north to work with his older brother Arthur who was managing one of Wheatstone's telegraph companies in Newcastle-upon-Tyne.[6]

Two years later he took a job as a telegraph operator with the Danish Great Northern Telegraph Company laying a cable from Newcastle to Denmark using British contractors, soon becoming an electrician. Heaviside continued to study while working, and at age 21 and 22 he published some research related to electric circuits and telegraphy. In 1874 at age 24 he resigned his job and returned to studying full-time on his own at his parents' home in London, never returning to paid employment. He remained single throughout his life.

In 1873 Heaviside had encountered James Clerk Maxwell's newly published, and today famous, two-volume Treatise on Electricity and Magnetism. In his old age Heaviside recalled:

I remember my first look at the great treatise of Maxwell's when I was a young man... I saw that it was great, greater and greatest, with prodigious possibilities in its power... I was determined to master the book and set to work. I was very ignorant. I had no knowledge of mathematical analysis (having learned only school algebra and trigonometry which I had largely forgotten) and thus my work was laid out for me. It took me several years before I could understand as much as I possibly could. Then I set Maxwell aside and followed my own course. And I progressed much more quickly... It will be understood that I preach the gospel according to my interpretation of Maxwell.[7]

Doing research from home, he helped develop transmission line theory (also known as the "telegrapher's equations"). Heaviside showed mathematically that uniformly distributed inductance in a telegraph line would diminish both attenuation and distortion, and that, if the inductance were great enough and the insulation resistance not too high, the circuit would be distortionless while currents of all frequencies would have equal speeds of propagation. Heaviside's equations helped further the implementation of the telegraph.

Middle years[edit]

In 1880, Heaviside researched the skin effect in telegraph transmission lines. That same year he patented, in England, the coaxial cable. In 1884 he recast Maxwell's mathematical analysis from its original cumbersome form (they had already been recast as quaternions) to its modern vector terminology, thereby reducing twelve of the original twenty equations in twenty unknowns down to the four differential equations in two unknowns we now know as Maxwell's equations. The four re-formulated Maxwell's equations describe the nature of static and moving electric charges and magnetic dipoles, and the relationship between the two, namely electromagnetic induction.

Between 1880 and 1887, Heaviside developed the operational calculus (involving the D notation for the differential operator, which he is credited with creating), a method of solving differential equations by transforming them into ordinary algebraic equations which caused a great deal of controversy when first introduced, owing to the lack of rigour in his derivation of it. He famously said, "Mathematics is an experimental science, and definitions do not come first, but later on." He was replying to criticism over his use of operators that were not clearly defined. On another occasion he stated somewhat more defensively, "I do not refuse my dinner simply because I do not understand the process of digestion."

In 1887, Heaviside proposed that induction coils (inductors) should be added to telephone and telegraph lines to increase their self-induction and correct the distortion which they suffered. This was not done, largely due to the technical incompetence and personal animosity of William Henry Preece at the Post Office.[8] The importance of Heaviside's work remained undiscovered for some time after publication in The Electrician, and so its rights lay in the public domain. AT&T later employed one of its own scientists, George A. Campbell, and an external investigator Michael I. Pupin to determine whether Heaviside's work was incomplete or incorrect. Campbell and Pupin extended Heaviside's work, and AT&T filed for patents covering not only their research, but also the technical method of constructing the coils previously invented by Heaviside. AT&T later offered Heaviside money in exchange for his rights; it is possible that the Bell engineers' respect for Heaviside influenced this offer. However, Heaviside refused the offer, declining to accept any money unless the company were to give him full recognition. Heaviside was chronically poor, making his refusal of the offer even more striking.[9]

In two papers of 1888 and 1889, Heaviside calculated the deformations of electric and magnetic fields surrounding a moving charge, as well as the effects of it entering a denser medium. This included a prediction of what is now known as Cherenkov radiation, and inspired his friend George FitzGerald to suggest what now is known as the Lorentz–FitzGerald contraction.

In 1889, Heaviside first published a correct derivation of the magnetic force on a moving charged particle,[10] which is now called the Lorentz Force.

In the late 1880s and early 1890s, Heaviside worked on the concept of electromagnetic mass. Heaviside treated this as material mass, capable of producing the same effects. Wilhelm Wien later verified Heaviside's expression (for low velocities).

In 1891 the British Royal Society recognized Heaviside's contributions to the mathematical description of electromagnetic phenomena by naming him a Fellow of the Royal Society, and the following year devoting more than fifty pages of the Philosophical Transactions of the Society to his vector methods and electromagnetic theory. In 1905 Heaviside was given an honorary doctorate by the University of Göttingen.

Later years and views[edit]

Heaviside's grave in Paignton cemetery

In 1902, Heaviside proposed the existence of what is now known as the Kennelly–Heaviside layer of the ionosphere. Heaviside's proposal included means by which radio signals are transmitted around the Earth's curvature. The existence of the ionosphere was confirmed in 1923. The predictions by Heaviside, combined with Planck's radiation theory, probably discouraged further attempts to detect radio waves from the Sun and other astronomical objects. For whatever reason, there seem to have been no attempts for 30 years, until Jansky's development of radio astronomy in 1932.

In later years his behavior became quite eccentric. Though he had been an active cyclist in his youth, his health seriously declined in his sixth decade. During this time Heaviside would sign letters with the initials "W.O.R.M." after his name. Heaviside also reportedly started painting his fingernails pink and had granite blocks moved into his house for furniture.[11] In 1922, he became the first recipient of the Faraday Medal, which was established that year.

On Heaviside's religious views, he was a Unitarian, but not a religious one. He was even said to have made fun of people who put their faith on a supreme being.[12]

Heaviside died at Torquay in Devon, and is buried near the eastern corner of Paignton cemetery. He is buried with his father, Thomas Heaviside and his mother, Rachel Elizabeth Heaviside. The gravestone was cleaned thanks to an anonymous donor sometime in 2005[13] but as of 2014, the plot is in poor condition. The Heaviside Memorial Project was founded in July 2014 to restore the monument through public subscription.[14] Most of his recognition was gained posthumously.

Innovations and discoveries[edit]

Heaviside did much to develop and advocate vector methods and the vector calculus. Maxwell's formulation of electromagnetism consisted of 20 equations in 20 variables. Heaviside employed the curl and divergence operators of the vector calculus to reformulate 12 of these 20 equations into four equations in four variables (B, E, J, and ρ), the form by which they have been known ever since (see Maxwell's equations).

He invented the Heaviside step function and employed it to model the current in an electric circuit. He invented the operator method for solving linear differential equations, which resembles current Laplace transform methods (see inverse Laplace transform, also known as the "Bromwich integral"). The UK mathematician Thomas John I'Anson Bromwich later devised a rigorous mathematical justification for Heaviside's operator method.

Heaviside advanced the idea that the Earth's uppermost atmosphere contained an ionized layer known as the ionosphere; in this regard, he predicted the existence of what later was dubbed the Kennelly–Heaviside layer. He developed the transmission line theory (also known as the "telegrapher's equations"). He also independently discovered the Poynting vector.

Electromagnetic terms[edit]

Heaviside coined the following terms of art in electromagnetic theory:

Publications[edit]

See also[edit]

References[edit]

  1. ^ a b Anon (1926). "Obituary Notices of Fellows Deceased: Rudolph Messel, Frederick Thomas Trouton, John Venn, John Young Buchanan, Oliver Heaviside, Andrew Gray". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 110 (756): i–v. doi:10.1098/rspa.1926.0036.  edit
  2. ^ Hunt, B. J. (2012). "Oliver Heaviside: A first-rate oddity". Physics Today 65 (11): 48–41. doi:10.1063/PT.3.1788. 
  3. ^ Nahin, Paul J. (9 October 2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. JHU Press. p. 13. ISBN 978-0-8018-6909-9. 
  4. ^ Hunt, Bruce J. (1991). The Maxwellians. p. 51. 
  5. ^ Sarkar, T. K.; Mailloux, Robert; Oliner, Arthur A.; Salazar-Palma, M. and Sengupta, Dipak L. (2006). History of Wireless. John Wiley & Sons. p. 230. ISBN 978-0-471-78301-5. 
  6. ^ Hunt 1991, p. 53
  7. ^ Sarkar, T. K.; Mailloux, Robert; Oliner, Arthur A.; Salazar-Palma, M. and Sengupta, Dipak L. (30 January 2006). History of Wireless. John Wiley & Sons. p. 232. ISBN 978-0-471-78301-5. 
  8. ^ Nahin, pp. vi–xvii, 162–183
  9. ^ Wiener, Norbert (1993). Invention: The Care and Feeding of Ideas. Cambridge, Massachusetts: MIT Press. pp. 70–75. ISBN 0-262-73111-8. 
  10. ^ Heaviside, O. (1889). "XXXIX.On the electromagnetic effects due to the motion of electrification through a dielectric". Philosophical Magazine Series 5 27 (167): 324. doi:10.1080/14786448908628362.  edit
  11. ^ Nahin, p. xx
  12. ^ Pickover, Clifford A. (1998). "Oliver Heaviside". Strange Brains and Genius: The Secret Lives of Eccentric Scientists and Madmen. Plenum Publishing Company Limited. ISBN 9780306457845. "Religion: A Unitarian, but not religious. Poked fun at those who put their faith in a Supreme Being." 
  13. ^ Mahon, Basil (2009). Oliver Heaviside: Maverick mastermind of electricity. The Institution of Engineering and Technology. ISBN 9780863419652. 
  14. ^ http://www.heavisidememorialproject.co.uk

Further reading[edit]

Sorted by date.

  • Lee, G., "Oliver Heaviside". London, 1947.
  • "The Heaviside Centenary Volume". The Institution of Electrical Engineers. London, 1950.
  • Josephs, H, J., "Oliver Heaviside : a biography". London, 1963.
  • Josephs, H, J., "The Heaviside Papers found at Paignton in 1957.". Electromagnetic Theory by Oliver Heaviside. New York, 1971.
  • Douglas H. Moore; Edmund Taylor Whittaker (1928). Heaviside operational calculus: an elementary foundation. ISBN 0-444-00090-9. 
  • Jed Z. Buchwald (1985). From Maxwell to Microphysics: Aspects of Electromagnetic Theory in the Last Quarter of the Nineteenth Century. Chicago : University of Chicago Press. ISBN 978-0-226-07882-3. 
  • G. F. C. Searle (1987). Oliver Heaviside, the man. ISBN 0-906340-05-5. 
  • Paul J. Nahin (1987). Oliver Heaviside, sage in solitude: the life, work, and times of an electrical genius of the Victorian age. IEEE. ISBN 978-0-87942-238-7. 
  • Laithwaite, E. R., "Oliver Heaviside – establishment shaker". Electrical Review, 12 November 1982.
  • BRUCE J. HUNT (2005). "The" Maxwellians. Cornell University Press. ISBN 978-0-8014-8234-2. 
  • Lynch, A. C., "The Sources for a Biography of Oliver Heaviside". History of Technology, Vol. 13, ed. G. Hollister-Short, London & New York, 1991.
  • I. Yavetz (1995). From Obscurity to Enigma: The Work of Oliver Heaviside, 1872–1889. Birkhauser. ISBN 978-3-7643-5180-9. 
  • Basil Mahon (11 May 2009). Oliver Heaviside: Maverick Mastermind of Electricity. Institution of Engineering and Technology. ISBN 978-0-86341-965-2. 

External links[edit]

Public Domain This article incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). Encyclopædia Britannica (11th ed.). Cambridge University Press.