Order-4 hexagonal tiling honeycomb

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Order-4 hexagonal tiling honeycomb
H3 634 FC boundary.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {6,3,4}
{6,31,1}
t0,1{(3,6)2}
Coxeter diagrams CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel branch 11.pngCDel 6a6b.pngCDel branch.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node.png
CDel K6 636 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png
Cells {6,3} Uniform tiling 63-t0.png Uniform tiling 63-t12.png Uniform tiling 333-t012.png
Faces hexagon {6}
Edge figure square {4}
Vertex figure Order-4 hexagonal tiling honeycomb verf.png
octahedron, {3,4}
Dual Order-6 cubic honeycomb
Coxeter groups BV3, [6,3,4]
DV3, [6,31,1]
[(6,3)[2]]
Properties Regular, quasiregular honeycomb

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is called paracompact because it has infinite cells. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

The Schläfli symbol of the order-4 hexagonal tiling honeycomb is {6,3,4}. Since that of the hexagonal tiling of the plane is {6,3}, this honeycomb has four such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the octahedron is {3,4}, the vertex figure of this honeycomb is an octahedron. Thus, 8 hexagonal tilings meet at each vertex of this honeycomb, and the six edges meeting at each vertex lie along three orthogonal axes.[1]

Images[edit]

Hyperbolic 3d order 4 hexagonal tiling.png
Perspective projection
H2 tiling 33i-7.png
The vertices of a t{(3,∞,3)}, CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel labelinfin.png tiling exists as a 2-hypercycle within this honeycomb
Order-4 hexagonal tiling honeycomb one cell horocycle.png
It is analogous to the H2 order-4 apeirogonal tiling, {∞,4}, shown here with one green apeirogon outlined by its horocycle

Symmetry[edit]

Subgroup relations

It has three reflective simplex symmetry construction. The uniform construction {6,31,1} has two types (colors) of hexagonal tilings in the Wythoff construction. CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png A quarter symmetry construction can have four colors of hexagonal tilings: CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png.

An additional two reflective symmetries exist with nonsimplex fundamental domains:Coxeter notation: [6,3*,4], index 6, CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes.png, and [6,(3,4)*], index 48, with a cube fundamental domain, and octahedral Coxeter diagram with three axial infinite branches: CDel K6 636 11.png. It can be seen with 8 colors of hexagonal tilings.

This honeycomb contains CDel node 1.pngCDel 3.pngCDel node 1.pngCDel ultra.pngCDel node.png that tile 2-hypercycle surfaces, similar to this paracompact tilings, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel infin.pngCDel node.png:

H2 tiling 23i-6.png

Related polytopes and honeycombs[edit]

It is one of 15 regular hyperbolic honeycombs in 3-space, 11 of which like this one are paracompact, with infinite cells or vertex figures.

11 paracompact regular honeycombs
H3 633 FC boundary.png
{6,3,3}
H3 634 FC boundary.png
{6,3,4}
H3 635 FC boundary.png
{6,3,5}
H3 636 FC boundary.png
{6,3,6}
H3 443 FC boundary.png
{4,4,3}
H3 444 FC boundary.png
{4,4,4}
H3 336 CC center.png
{3,3,6}
H3 436 CC center.png
{4,3,6}
H3 536 CC center.png
{5,3,6}
H3 363 FC boundary.png
{3,6,3}
H3 344 CC center.png
{3,4,4}

There are fifteen uniform honeycombs in the [6,3,4] Coxeter group family, including this regular form, and its dual, the order-6 cubic honeycomb, {4,3,6}.

[6,3,4] family honeycombs
{6,3,4} t1{6,3,4} t0,1{6,3,4} t0,2{6,3,4} t0,3{6,3,4} t0,1,2{6,3,4} t0,1,3{6,3,4} t0,1,2,3{6,3,4}
H3 634 FC boundary.png H3 634 boundary 0100.png
H3 436 CC center.png H3 436 CC center 0100.png
{4,3,6} t1{4,3,6} t0,1{4,3,6} t0,2{4,3,6} t1,2{4,3,6} t0,1,2{4,3,6} t0,1,3{4,3,6} t0,1,2,3{4,3,6}
Regular and Quasiregular honeycombs: {p,3,4} and {p,31,1}
Space Euclidean 4-space Euclidean 3-space Hyperbolic 3-space
Name {3,3,4}
{3,31,1} = \left\{3,{3\atop3}\right\}
{4,3,4}
{4,31,1} = \left\{4,{3\atop3}\right\}
{5,3,4}
{5,31,1} = \left\{5,{3\atop3}\right\}
{6,3,4}
{6,31,1} = \left\{6,{3\atop3}\right\}
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png
Image 16-cell nets.png Bicolor cubic honeycomb.png H3 534 CC center.png H3 634 FC boundary.png
Cells
{p,3}
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-53-t0.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-63-t0.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png

It has a related alternation honeycomb, represented by CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png, having triangular tiling and octahedron cells.

It is a part of sequence of regular honeycombs with hexagonal tiling cells of the form {6,3,p}:

{6,3,p}
Space H3
Form Paracompact Noncompact
Name {6,3,3} {6,3,4} {6,3,5} {6,3,6} {6,3,7}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
{6,3,8}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
... {6,3,∞}
Coxeter
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel splitplit1u.pngCDel branch4u 11.pngCDel uabc.pngCDel branch4u.pngCDel splitplit2u.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
Image H3 633 FC boundary.png H3 634 FC boundary.png H3 635 FC boundary.png H3 636 FC boundary.png H3 637 UHS plane at infinity view 1.png H3 63i UHS plane at infinity.png
Vertex
figure
{3,p}
CDel node 1.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
Tetrahedron.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Octahedron.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.png
Icosahedron.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.png
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.png
H2 tiling 237-4.png
{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 238-4.png
{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel label4.png
H2 tiling 23i-4.png
{3,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png

This honeycomb is also related to the 16-cell, cubic honeycomb and order-4 dodecahedral honeycomb all which have octahedral vertex figures.

{p,3,4}
Space S3 E3 H3
Form Finite Affine Compact Paracompact Noncompact
Name {3,3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
{4,3,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png
{5,3,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png
{6,3,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes.png
{7,3,4}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel split1.pngCDel nodes.png
{8,3,4}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1-44.pngCDel branch 11.pngCDel label4.pngCDel uaub.pngCDel nodes.png
... {∞,3,4}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1-ii.pngCDel branch 11.pngCDel labelinfin.pngCDel uaub.pngCDel nodes.png
Image Stereographic polytope 16cell.png Cubic honeycomb.png H3 534 CC center.png H3 634 FC boundary.png
Cells Tetrahedron.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Hexahedron.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Dodecahedron.png
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.png
{6,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 237-1.png
{7,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 238-1.png
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 23i-1.png
{∞,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png

Rectified order-4 hexagonal tiling honeycomb[edit]

Rectified order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{6,3,4} or t1{6,3,4}
Coxeter diagrams CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
Cells {3,4} Uniform polyhedron-43-t2.png
r{6,3} Uniform tiling 63-t1.png
Faces Triangle {3}
Hexagon {6}
Vertex figure Rectified order-4 hexagonal tiling honeycomb verf.png
Square prism {}×{4}
Coxeter groups BV3, [6,3,4]
DV3, [6,31,1]
[4,3[3]]
[3[ ]×[3]]
Properties Vertex-transitive, edge-transitive

The rectified order-4 hexagonal tiling honeycomb, t1{6,3,4}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png has octahedral and trihexagonal tiling facets, with a square prism vertex figure.

H3 634 boundary 0100.png

It is similar to the 2D hyperbolic tetraapeirogonal tiling, r{∞,4}, CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png which alternates apeirogonal and square faces:

H2 tiling 24i-2.png

Truncated order-4 hexagonal tiling honeycomb[edit]

Truncated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t{6,3,4} or t0,1{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
Cells {3,4} Uniform polyhedron-43-t2.png
t{6,3} Uniform tiling 63-t01.png
Faces Triangle {3}
Dodecagon {12}
Vertex figure Truncated order-4 hexagonal tiling honeycomb verf.png
square pyramid
Coxeter groups BV3, [6,3,4]
DV3, [6,31,1]
Properties Vertex-transitive

The truncated order-4 hexagonal tiling honeycomb, t0,1{6,3,4}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png has octahedron and truncated hexagonal tiling facets, with a square pyramid vertex figure.

It is similar to the 2D hyperbolic truncated order-4 apeirogonal tiling, t{∞,4}, CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png with apeirogonal and square faces:

H2 tiling 24i-3.png

Bitruncated order-4 hexagonal tiling honeycomb[edit]

Bitruncated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol 2t{6,3,4} or t1,2{6,3,4}
Coxeter diagram CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells t{4,3} Uniform polyhedron-43-t12.png
t{3,6} Hexagonal prism.png
t{3,6} Uniform tiling 63-t12.png
Faces Triangle {3}
hexagon {6}
octagon {8}
Vertex figure Bitruncated order-4 hexagonal tiling honeycomb verf.png
tetrahedron
Coxeter groups BV3, [6,3,4]
DV3, [6,31,1]
[4,3[3]]
[3[ ]×[3]]
Properties Vertex-transitive

The bitruncated order-4 hexagonal tiling honeycomb, t1,2{6,3,4}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png has Truncated octahedron and hexagonal tiling cells, with a tetrahedral vertex figure.

Cantellated order-4 hexagonal tiling honeycomb[edit]

Cantellated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol rr{6,3,4} or t0,2{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells r{3,4} Uniform polyhedron-43-t1.png
rr{6,3} Uniform tiling 63-t02.png
Faces Triangle {3}
square {4}
hexagon {6}
Vertex figure Cantellated order-4 hexagonal tiling honeycomb verf.png
triangular prism
Coxeter groups BV3, [6,3,4]
DV3, [6,31,1]
Properties Vertex-transitive

The cantellated order-4 hexagonal tiling honeycomb, t0,2{6,3,4}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png has cuboctahedron and rhombitrihexagonal tiling cells, with a triangular prism vertex figure.

Runcinated order-4 hexagonal tiling honeycomb[edit]

Runcinated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,3{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes 11.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 6.pngCDel node 1.png
Cells {4,3} Uniform polyhedron-43-t0.png
{6,3} Uniform tiling 63-t0.png
{}x{6} Hexagonal prism.png
Faces Triangle {3}
square {4}
hexagon {6}
Vertex figure Runcinated order-4 hexagonal tiling honeycomb verf.png
triangular antiprism
Coxeter groups BV3, [6,3,4]
DV3, [6,31,1]
Properties Vertex-transitive

The runcinated order-4 hexagonal tiling honeycomb, t0,3{6,3,4}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png has cube, hexagonal tiling and hexagonal prism cells, with a triangular antiprism vertex figure.

It contains the 2D hyperbolic rhombitetrahexagonal tiling, rr{4,6}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png with square and hexagonal faces. It also has a half symmetry construction CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png.

H2 tiling 246-5.png Uniform tiling 4.4.4.6.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node 1.png = CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png

Omnitruncated order-4 hexagonal tiling honeycomb[edit]

Omnitruncated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,2,3{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells tr{4,3} Uniform polyhedron-43-t012.png
tr{6,3} Uniform tiling 63-t012.png
{}x{6} Hexagonal prism.png
{4,3} Hexahedron.png
Faces square {4}
hexagon {6}
dodecagon {12}
Vertex figure Omnitruncated order-4 hexagonal tiling honeycomb verf.png
tetrahedron
Coxeter groups BV3, [6,3,4]
Properties Vertex-transitive

The omnitruncated order-4 hexagonal tiling honeycomb, t0,1,2,3{6,3,4}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png has truncated cuboctahedron, truncated trihexagonal tiling, hexagonal prism, and cube cells, with a tetrahedron vertex figure.

Alternated order-4 hexagonal tiling honeycomb[edit]

Alternated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols h{6,3,4}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node h0.png
Cells
Faces Triangle {3}
Hexagon {6}
Vertex figure CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
truncated octahedron
Coxeter groups BV3, [6,3,4]
Properties Vertex-transitive, edge-transitive

Quarter order-4 hexagonal tiling honeycomb[edit]

Quarter order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol q{6,3,4}
Coxeter diagram CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
Cells {3,6} Uniform tiling 333-t0.png
{3,3} Uniform polyhedron-33-t0.png
t{3,3} Uniform polyhedron-33-t01.png
rr{3,6} Uniform tiling 333-t02.png
Faces {3}, {6}
Vertex figure Paracompact honeycomb DP3 1100 verf.png
Triangular cupola
Coxeter groups {\bar{DP}}_3, [3[ ]x[ ]]
Properties Vertex-transitive

The quarter order-4 hexagonal tiling honeycomb, q{6,3,4}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png or CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png with a triangular cupola vertex figure.

See also[edit]

References[edit]

  1. ^ Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III