From Wikipedia, the free encyclopedia
Jump to: navigation, search

Osmoprotectants or compatible solutes are small molecules that act as osmolytes and help organisms survive extreme osmotic stress.[1] In plants, their accumulation can increase survival during stresses such as drought. Examples of compatible solutes include betaines, amino acids, and the sugar trehalose. These molecules accumulate in cells and balance the osmotic difference between the cell's surroundings and the cytosol. In extreme cases, such as in bdelloid rotifers, tardigrades, brine shrimp, and nematodes, these molecules can allow cells to survive being completely dried out and let them enter a state of suspended animation called cryptobiosis.[2] In this state the cytosol and osmoprotectants become a glass-like solid that helps stabilize proteins and cell membranes from the damaging effects of desiccation.[3]

Compatible solutes have also been shown to play a protective role by maintaining enzyme activity through freeze-thaw cycles and at higher temperatures. Their specific action is unknown but is thought that they are preferentially excluded from the proteins interface due to their propensity to form water structures.

Role of Osmoprotectants

Abiotic stresses collectively are responsible for crop losses worldwide. Among various abiotic stresses, drought and salinity are the most destructive. Different strategies have been adopted for the management of these stresses. Being complex traits, conventional breeding approaches have shown less success in improving salinity and drought stress tolerance. Roles of compatible solutes in salinity and drought stress tolerance have been studied extensively. At the physiological level, osmotic adjustment is an adaptive mechanism involved in drought and/or salinity tolerance and permits the maintenance of turgor pressure under stress conditions. Increasing evidences from series of in vivo and in vitro studies involving physiological, biochemical, genetic, and molecular approaches strongly suggest that osmolytes such as ammonium compounds (polyamines, glycine betaine, b-alanine betaine, dimethyl-sulfonio propionate and choline-O-sulfate), sugars and sugar alcohols (fructan, trehalose, mannitol, d-ononitol and sorbitol) and amino acids (proline and ectoine) perform important function in adjustment of plants against salinity and drought stresses. Thus, the aim of this review is to expose how to osmoprotectants detoxify adverse effect of reactive oxygen species and alleviate drought and salinity stresses. An understanding of the relationship between these two sets of parameters is needed to develop measures for mitigating the damaging impacts of salinity and drought stresses.(Singh, M., et al. (2015). "Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review." Reviews in Environmental Science and Bio/Technology 14(3): 407-426).

See also[edit]


  1. ^ Lang F (October 2007). "Mechanisms and significance of cell volume regulation". J Am Coll Nutr. 26 (5 Suppl): 613S–623S. PMID 17921474. doi:10.1080/07315724.2007.10719667. 
  2. ^ Sussich F, Skopec C, Brady J, Cesàro A (August 2001). "Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal?". Carbohydr. Res. 334 (3): 165–76. PMID 11513823. doi:10.1016/S0008-6215(01)00189-6. 
  3. ^ Crowe JH, Carpenter JF, Crowe LM (1998). "The role of vitrification in anhydrobiosis". Annu. Rev. Physiol. 60: 73–103. PMID 9558455. doi:10.1146/annurev.physiol.60.1.73.